Biomedical Engineering Reference
In-Depth Information
Finkelmann, H., and H. R. Brand. 1994. Liquid crystalline elastomers—A class of materials
with novel properties.
. 2:222.
Finkelmann H., H. J. Kock, and G. Rehage. 1981. Investigations on liquid crystalline silox-
anes: 3. Liquid crystalline elastomer—A new type of liquid crystalline material.
Trends.
Polym. Sci
. 2:317-323.
Finkelmann, H., and M. Shahinpoor. 2002. Electrically controllable liquid crystal elas-
tomer-graphite composite artificial muscles.
Makromolec. Chem.
Rapid Commun
Proceedings of SPIE 9th annual
international symposim on smart structures and materials.
In
(March, San Diego, CA),
4695-53.
Firoozbakhsh, K., and M. Shahinpoor. 1998. Mathematical modeling of ionic interactions and
deformation in ionic polymeric metal composite artificial muscles.
Proceedings of
SPIE smart materials and structures conference
. (March 3-5, San Diego, CA),
publication no. SPIE 3323-66.
Flory, P. J. 1941. Thermodynamics of high polymer solutions.
J. Chem. Phys.
9(8):660.
Flory, P. J. 1953a.
Principles of polymer chemistry
. Ithaca, NY: Cornell University Press.
———. 1953b.
Statistical mechanics of swelling network structures
. Ithaca, NY: Cornell
University Press.
———. 1969.
. New York: Interscience Publishers.
Fragala, A., J. Enos, A. LaConti, and J. Boyack. 1972. Electrochemical activation of synthetic
artificial muscle membrane.
Statistical mechanics of polymer chains
17:1507-1522.
Full, R. J., and K. Meijer. 2001. Metrics of natural muscle. In
Electrochem. Acta
Electro active polymers (EAP)
as artificial muscles, reality potential and challenges
, ed. Y. Bar-Cohen. SPIE &
William Andrew/Noyes Publications, 67-83.
Full, R. J., T. Kubow, J. Schmitt, P. Holmes, and D. Koditschek. 2002. Quantifying dynamic
stability and maneuverability in legged locomotion.
42:149-157.
Furukawa, T., and N. Seo. 1990. Electrostriction as the origin of piezoelectricity in ferroelec-
trics polymers.
Int. Comp. Biol.
29(4):675-680.
Furusha. J., and M. S. Sakaguchi. 1999. New actuators using ER fluids and their applications
to force display devices in virtual reality and medical treatment.
Jpn.
J. Appl. Phys.
Int. J. Mod. Phys.,
13(14-16):2051-2059.
Gandhi, M. R., P. Murray, G. M. Spinks, and G. G. Wallace. 1995. Mechanisms of electro-
mechanical actuation in polypyrrole.
B
75:247-256.
Gandhi, M. V., B. S. Thompson, and S.-B. Choi. 1989. A new generation of innovative ultra-
intelligent composite materials featuring electro-rheological: An experimental inves-
tigation.
Synth. Met.
23:1232-1255.
Gandhi, M. V., B. S. Thompson, S.-B. Choi, and S. Shakair. 1989. Electro-rheological fluid-
based articulating robotic systems.
J. Composite Mater.
ASME J. Mech.
,
Transmissions Automation Design
111:328-336.
Gebel, G., P. Aldebert, and M. Pineri. 1987. Structure and related properties of solution-case
perfluorosulfonate isonomer films.
Macromolecules.
20, 1425-1428.
Genuini, G. et al. 1990.
Psuedomuscular linear actuators: Modeling and simulation experi-
ences in the motion of articulated chains
. Maratea, Italy: NATO ACI Science.
Gierke, T. D., G. E. Munn, and F. C. Wilson. 1982. Morphology of perfluorosulfonated
membrane products—wide-angle and small-angle x-ray studies.
ACS Symp. Ser
.
180:195-216. (Washington, D.C.: American Chemical Society).
Gierke, T. D., and W. Y. Hsu. 1982. The cluster-network model of ion clustering in perfluo-
rosulfonated membranes. In
Perfluorinated ionomer membranes
, ed. A. Eisenberg
and H. L. Yeager. Washington, D.C.: ACS, 283-307.
Search WWH ::




Custom Search