Biomedical Engineering Reference
In-Depth Information
Bar-Cohen, Y., T. Xue, M. Shahinpoor, J. Simpson, and J. Smith. 1998a. Flexible low-mass
robotic arm actuated by electroactive polymers (EAP).
Proceedings of SPIE smart
materials and structures conference
. (March 3-5, San Diego, CA), SPIE publication
no. SPIE 3329-07.
———. 1998b. Flexible, low-mass robotic arm actuated by electroactive polymers and oper-
ated equivalently to human arm and hand.
Proceedings of the space '98-robotics '98
conference, third international conference exposition on robotics for challenging
environment,
ed. L. A. Demsetz, R. H. Byrne, and J. P. Weyzel. (April 26-30,
Albuquerque, NM), American Society of Civil Engineers.
Baughman, R. H. 1996. Conducting polymer artificial muscles.
78:339-353.
Baughman R. H., C. Cui, A. A. Zakhidov, Z. lqbal, J. N. Basrisci, G. M. Spinks, G. G. Wallace,
A. Mazzoldi, D. de Rossi, A. G. Rinzier, O. Jaschinski, S. Roth, and M. Kertesz.
1999. Carbon nanotube actuators.
Synth. Met.
284:1340-1344.
Baughman, R. H., L. W. Shacklette, R. L. Elsenbaumer, E. J. Plichta, and C. Becht. 1991.
Microelectromechanical actuators based on conducting polymers. In
Science
Molecular elec-
, ed. P. I. Lazarev Dordrecht: Kluwer Academic Publishers.
Beatty, M. F. 1987. Topics in finite elasticity: Hyperelasticity of rubber, elastomers, and
biological tissues—with examples.
tronics
40:1699-1733. (Reprinted with
minor modifications as “Introduction to Nonlinear Elasticity.” In
Appl. Mech. Rev.
Nonlinear effects in
fluids and solids
, ed. M. M. Carroll and M. A. Hayes. New York: Plenum Press,
16-112, 1996.)
Bejczy, A. K., and J. K. Salisbury. 1983. Controlling remote manipulators through kinesthetic
coupling.
2(1).
Bennet, M., and D. J. Leo. 2003. Manufacture and characterization of ionic polymer trans-
ducers with non-precious metal electrodes.
Computers Mech. Eng.
12(3):424-436.
Bernardi, D. M. and M.W. Verbugge. 1992. A mathematical model of a solid polymer
electrolyte fuel cell.
J. Smart Mater. Struct.
139(9):2477-2491.
Bernardi, P., G. D'Inzeo, and S. Pisa. 1994. A generalized ionic model of the neuronal
membrane electrical activity.
J. Electrochem. Soc.,
IEEE Trans. Biomed. Eng.
41(2):125-133.
Bone, Q., and N. B. Marshall. 1982.
. London: Blackie & Son.
Brand, H. R., and H. Finkelmann. 1998. Physical properties of liquid crystalline elastomers. In
Biology of fishes
, ed. D. Demus,
J. Goodby, G. W. Gray, H.-W. Spiess, and V. Vill. Weinheim: Wiley-VCH, 277-289.
Brand, P. W., and A. Hollister. 1993.
Handbook of liquid crystals. Vol. 3: High molecular weight liquid crystals
, 2nd ed. Mosby Year Book.
Brandt, H. R., and H. Pleiner. 1994. Electrohydrodynamics of nematic liquid crystalline
elastomers.
Clinical mechanics of the hand
A 208:359.
Brock, D. 1991a. Artificial muscle research review. MIT Artificial Intelligence Lab., Cam-
bridge, MA.
———. 1991b. Design and control of an artificial muscle. MIT Artificial Intelligence Lab.,
Cambridge, MA.
———. 1991c. Review of artificial muscle based on contractile polymers. MIT Artificial
Intelligence Lab., AI Memo No. 1330.
Brock, D., W. Lee, D. Segalman, and W. Witkowski. 1994a. A dynamic model of a linear
actuator based on polymer hydrogel. In
Phys.
Proceedings of the international conference
210-222.
———. 1994b. A dynamic model of a linear actuator based on polymer hydrogel.
on intelligent materials,
J. Intelligent
5(6):764-771.
Burgmayer, P., and R. W. Murray. 1982. An ion gate membrane: Electrochemical control of
ion permeability through a membrane with an embedded electrode.
Mater. Syst. Struct.
J. Am. Chem.
Soc
. 104:6139.
Search WWH ::




Custom Search