Biomedical Engineering Reference
In-Depth Information
e
E
( x , y , z , t ) = [ eE ( x , y , z , t ) x , eE ( x , y , z , t ) y , eE ( x , y , z , t ) z ] T ,
(6.120)
is the force vector on an individual cation due to electro-osmotic motion of an ion
in an electric field, k is the Boltzmann's constant,
ν
( x , y , z , t ) = [
ν x ( x , y , z , t ),
ν y ( x , y , z , t ),
ν z ( x , y , z , t )] T
(6.121)
is the velocity vector of the hydrated cations,
η
ν
( x , y , z , t ) = [
ην x ( x , y , z , t ),
ην y ( x , y , z , t ),
ην z ( x , y , z , t )] T
(6.122)
is the force vector of the viscous resistance to the motion of individual hydrated
cations in the presence of a viscous fluid medium with a viscosity of
η
, and
kT
[ln(
ρ
( ,
x y z t
, , )
+
n
ρ
( ,
xyzt
, , )]
(6.123)
M
+
w
is the force vector due to diffusion of individual cations and accompanying molecules
of hydrated water in the polymer network with the following x , y , and z components,
respectively:
ln[
ρ
( , , , )
xyzt
+
n
ρ
( , , , )]
xyzt
M
+
w
kT
,
(6.124)
x
ln[
ρ
( , , , )
xyzt
+
n
ρ
( , , , )]
xyzt
M
+
w
kT
,
(6.125)
y
ln[
ρ
( , , , )
xyzt
+
n
ρ
( , , , )]
xyzt
M
+
w
,
(6.126)
kT
z
The force vector due to inertial effects on an individual hydrated cation is
MnM d
dt
ν
(
+ +
)(
)
(6.127)
M
w
such that, in a compact vector form, the force balance equation reads:
d
dt
ν
Ne
ρ
Ε
=
N
(
ρ
M
+
n
ρ
M
)(
)
+
N
ρην
+
M
+
M
+
M
+
w
w
M
+
(6.128)
N
ρ
kT
n
(
ρ
+
n
ρ
)
+ ∇
P
−∇
.
σ
*
M
+
M
+
w
f
where the stress tensor can be expressed in terms of the deformation gradients in
a nonlinear manner such as in neo-Hookean or Mooney-Rivlin types of constitutive
σ
*
 
Search WWH ::




Custom Search