Chemistry Reference
In-Depth Information
211. Yamada M, Nakahodo T, Wakahara T et al (2005) Positional control of encapsulated atoms
inside a fullerene cage by exohedral addition. J Am Chem Soc 127:14570-14571
212. Yamada M, Wakahara T, Nakahodo T et al (2006) Synthesis and structural characterization
of endohedral pyrrolidinodimetallofullerene: La 2 @C 80 (CH 2 ) 2 NTrt. J Am Chem Soc
128:1402-1403
213. Cardona CM, Elliott B, Echegoyen L (2006) Unexpected chemical and electrochemical
properties of M 3 N@C 80 (M
Sc, Y, Er). J Am Chem Soc 128:6480-6485
214. Rodr´guez-Fortea A, Campanera JM, Cardona CM et al (2006) Dancing on a fullerene
surface:
¼
isomerization of Y 3 N@(N-ethylpyrrolidino-C 80 )
from the 6,6 to the 5,6
regioisomers. Angew Chem Int Ed 45:8176-8180
215. Pinz ´ n JR, Plonska-Brzezinska ME, Cardona CM et al (2008) Sc 3 N@C 80 -ferrocene electron-
donor/acceptor conjugates as promising materials for photovoltaic applications. Angew
Chem Int Ed 47:4173-4176
216. Takano Y, Herranz MA, Mart ´ n N et al (2010) Donor-acceptor conjugates of lanthanum
endohedral metallofullerene
and
ˀ -extended tetrathiafulvalene.
J Am Chem Soc
132:8048-8055
217. Li FF, Pinz ´ n JR, Mercado BQ et al (2011) [2+2]Cycloaddition reaction to Sc 3 N@ I h -C 80 .
The formation of very stable [5,6]- and [6,6]-adducts. J Am Chem Soc 133:1563-1571
218. Wang GW, Liu TX, Jiao M et al (2011) The cycloaddition reaction of I h -Sc 3 N@C 80 with 2-
amino-4,5-diisopropoxybenzoic acid and isoamyl nitrite to produce an open-cage
metallofullerene. Angew Chem Int Ed 50:4658-4662
219. Lukoyanova O, Cardona CM, Rivera J et al (2007) Open rather than closed malonate
methano-fullerene derivatives. The formation of methanofulleroid adducts of Y 3 N@C 80 .
J Am Chem Soc 129:10423-10430
220. Cai T, Xu L, Shu C et al (2008) Selective formation of a symmetric Sc3N@C78 bisadduct:
adduct docking controlled by an internal
trimetallic nitride cluster. J Am Chem Soc
130:2136-2137
221. Rudolf M, Wolfrum S, Guldi DM et al (2012) Endohedral metallofullerenes-filled fullerene
derivatives towards multifunctional reaction center mimics. Chemistry 8:5136-48
222. Feng L, Rudolf M, Wolfrum S et al (2012) A paradigmatic change: linking fullerenes to
electron acceptors. J Am Chem Soc 34:12190-12197
223. Li FF, Rodr´guez-Fortea A, Poblet JM et al (2011) Reactivity of metallic nitride endohedral
metallofullerene anions: electrochemical synthesis of a Lu 3 N@ I h -C 80 derivative. J Am Chem
Soc 133:2760-2765
224. Li FF, Rodr´guez-Fortea A, Peng P et al (2012) Electrosynthesis of a Sc 3 N@ I h -C 80 methano
derivative from trianionic Sc 3 N@ Ih -C 80 . J Am Chem Soc 134:480-7487
225. Tsuchiya T, Wielopolski M, Sakuma N et al (2011) Stable radical anions inside fullerene
cages: formation of reversible electron transfer systems. J Am Chem Soc 133:13280-13283
226. Armaroli N, Balzani V (2007) The future of energy supply: challenges and opportunities.
Angew Chem Int Ed 46:52-66
227. Chapin DM, Fuller CS, Pearson GL (1954) A new silicon p n junction photocell for
converting solar radiation into electrical power. J Appl Chem 25:676-678
228. Rispens MT, Hummelen JC (2002) Fullerenes: from synthesis to optoelectronic properties.
In: Guldi DM, Mart ´ n N (eds) Photovoltaic applications. Kluwer Academic, Dordrech,
pp 387-435 (Chap. 12)
229. Hummelen JC, Knight BW, LePeq F et al (1995) Preparation and characterization of fulleroid
and methanofullerene derivatives. J Org Chem 60:532-538
230. Yu G, Gao J, Hummelen JC et al (1995) Polymer photovoltaic cells: enhanced efficiencies via
a network of internal donor-acceptor heterojunctions. Science 270:1789-1791
231. Zhang Y, Yip HL, Acton O et al (2009) A simple and effective way of achieving highly
efficient and thermally stable bulk-heterojunction polymer solar cells using amorphous
fullerene derivatives as electron acceptor. Chem Mater 21:2598-2600
Search WWH ::




Custom Search