Chemistry Reference
In-Depth Information
120. Pinz´n JR, Villalta-Cerdas A, Echegoyen L (2012) Fullerenes, carbon nanotubes, and
graphene for molecular electronics. Top Curr Chem 312:127-174
121. Diederich F, Echegoyen L, G´mez-L´pez M et al (1999) The self-assembly of fullerene-
containing [2]pseudorotaxanes: formation of a supramolecular C 60 dimer. J Chem Soc Perkin
Trans 2:1577-1586
122. Rispens MT, S´nchez L, Knol J et al (2001) Supramolecular organization of fullerenes by
quadruple hydrogen bonding. Chem Commun 161-162
123. Gonz´lez JJ, Gonz´lez S, Priego E et al (2001) A new approach to supramolecular C 60 -dimers
based in quadruple hydrogen bonding. Chem Commun 163-164
124. Da Ros T, Guldi DM, Morales AF et al (2003) Hydrogen bond-assembled fullerene molecular
shuttle. Org Lett 5:689-691
125. Mateo-Alonso A, Fioravanti G, Marcaccio M et al (2006) Reverse shuttling in a fullerene-
stoppered rotaxane. Org Lett 8:5173-5176
126. Mateo-Alonso A, Brough P, Prato M (2007) Stabilization of fulleropyrrolidine N-oxides
through intrarotaxane hydrogen bonding. Chem Commun 1412-1414
127. Mateo-Alonso A, Fioravanti G, Marcaccio M et al (2007) An electrochemically driven
molecular shuttle controlled and monitored by C 60 . Chem Commun 1945-1947
128. Scarel F, Valenti G, Gaikwad S et al (2012) A molecular shuttle driven by fullerene radical-
anion recognition. Chemistry 44:14063-14068
129. Guldi DM, Ramey J, Mart´nez-D´az MV et al (2002) Reversible zinc phthalocyanine
fullerene ensembles. Chem Commun 2774-2775
130. S´nchez L, Sierra M, Mart´n N et al (2006) Exceptionally strong electronic communication
through hydrogen bonds in porphyrin-C 60 pairs. Angew Chem Int Ed 45:4637-4641
131. Sessler JL, Jayawickramarajah J, Gouloumis A et al (2005) Synthesis and photophysics of a
porphyrin-fullerene dyad assembled through Watson-Crick hydrogen bonding. Chem
Commun 1892-1894
132. Torres T, Gouloumis A, S´nchez-Garc´a D et al (2007) Photophysical characterization of a
cytidine-guanosine tethered phthalocyanine-fullerene dyad. Chem Commun 292-294
133. Wessendorf F, Gnichwitz J-F, Sarova GH et al (2007) Implementation of a Hamilton-
receptor-based hydrogen-bonding motif toward a new electron donor-acceptor prototype:
electron versus energy transfer. J Am Chem Soc 129:16057-16071
134. Maurer K, Grimm B, Wessendorf F et al (2010) Self-assembling depsipeptide dendrimers and
dendritic fullerenes with new cis - and trans -symmetric Hamilton receptor functionalized
Zn-porphyrins: synthesis, photophysical properties and cooperativity phenomena. Eur J Org
Chem 5010-5029
135. Grimm B, Schornbaum J, Jasch H et al (2012) Step-by-step self-assembled hybrids that
feature control over energy and charge transfer. Proc Natl Acad Sci U S A 109:15565-15571
136. Santos J, Grimm B, Illescas BM et al (2008) Cooperativity between ˀ - ˀ and H-bonding
interactions - a supramolecular complex formed by C 60 and exTTF. Chem Commun
5993-5995
137. Huang C-H, McClenaghan ND, Kuhn A et al (2005) Enhanced photovoltaic response in
hydrogen-bonded all-organic devices. Org Lett 7:3409-3412
138. Chu C-C, Raffy G, Ray D et al (2010) Self-assembly of supramolecular fullerene ribbons via
hydrogen-bonding interactions and their impact on fullerene electronic interactions and
charge carrier mobility. J Am Chem Soc 132:12717-12723
139. P´rez EM, Mart´n N (2008) Curves ahead: molecular receptors for fullerenes based on
concave-convex complementarity. Chem Soc Rev 37:1512-1519
140. Tashiro K, Aida T (2007) Metalloporphyrin hosts for supramolecular chemistry of fullerenes.
Chem Soc Rev 36:189-197
141. Kawase T, Kurata H (2006) Ball-, bowl-, and belt-shaped conjugated systems and their
complexing abilities: exploration of the concave-convex
ˀˀ
interaction. Chem Rev
106:5250-5273
Search WWH ::




Custom Search