Biomedical Engineering Reference
In-Depth Information
Lastly, noninvasive temperature imaging has emerged as a
powerful tool that is amenable to thermal therapy delivery in
many cases. Use of MRI for thermometry is costly and requires
MR-compatible instrumentation to be effective. In addition
to research being conducted to mitigate current MRTI limita-
tions as well as to develop compatible therapy instrumentation,
other alternatives, such as ultrasound temperature imaging,
are desperately needed for those procedures in which MRI is
contraindicated or presents a logistical or financial barrier to
implementation.
Cline, H. E., K. Hynynen, C. J. Hardy, R. D. Watkins, J. F. Schenck,
and F. A. Jolesz. 1994. “MR temperature mapping of focused
ultrasound surgery.” Magn Reson Med 31(6): 628-36.
Conturo, T. E. and G. D. Smith 1990. “Signal-to-noise in phase
angle reconstruction: Dynamic range extension using phase
reference offsets.” Magn Reson Med 15(3): 420-37.
Corbett, R. J., A. R. Laptook, G. Tollefsbol, and B. Kim 1995.
“Validation of a noninvasive method to measure brain tem-
perature in vivo using 1H NMR spectroscopy.” J Neurochem
64(3): 1224-30.
Das, S. K., J. Macfall, R. McCauley, O. Craciunescu, M. W.
Dewhirst, and T. V. Samulski. 2005. “Improved magnetic
resonance thermal imaging by combining proton resonance
frequency shift (PRFS) and apparent diffusion coefficient
(ADC) data.” Int J Hyperthermia 21(7): 657-67.
Davidson, S., I. Vitkin, M. Sherar, and W. Whelan 2005.
“Characterization of measurement artefacts in fluorop-
tic temperature sensors: Implications for laser thermal
therapy at 810 nm.” Lasers in Surgery and Medicine 36(4):
297-306.
De Poorter, J. 1995. “Noninvasive MRI thermometry with the
proton resonance frequency method: Study of susceptibility
effects.” Magn Reson Med 34(3): 359-67.
De Poorter, J., C. De Wagter, Y. De Deene, C. homsen, F.
Stahlberg, and E. Achten. 1995. “Noninvasive MRI ther-
mometry with the proton resonance frequency (PRF)
method: In vivo results in human muscle.” Magn Reson Med
33(1): 74-81.
De Poorter, J. D. W., C. De Deene, Y. Thomsen, C. Stahlberg, and
E. Achten. 1994. “The proton-resonance-frequency-shift
method compared with molecular diffusion for quantitative
measurement of two-dimensional time-dependent temper-
ature distribution in a phantom.” J Magn Reson B 103(3):
234.
de Senneville, B. D., C. Mougenot, B. Quesson, I. Dragonu,
N. Grenier, and C. T. W. Moonen. 2007. “MR thermom-
etry for monitoring tumor ablation.” Eur Radiol 17(9):
2401-10.
de Senneville, B. D., B. Quesson, and C. T. Moonen 2005. “Magnetic
resonance temperature imaging.” Int J Hyperthermia 21(6):
515-31.
de Zwart, J. A., F. C. Vimeux, C. Delalande, P. Canioni, and C.
T. Moonen 1999. “Fast lipid-suppressed MR temperature
mapping with echo-shifted gradient-echo imaging and
spectral-spatial excitation.” Magn Reson Med 42(1): 53-9.
Dewey, W. C. 1994. “Arrhenius relationships from the molecule
and cell to the clinic.” Int J Hyperthermia 10(4): 457-83.
Dewhirst, M. W., B. L. Viglianti, M. Lora-Michiels, M. Hanson,
and P. J. Hoopes 2003. “Basic principles of thermal dosim-
etry and thermal thresholds for tissue damage from hyper-
thermia.” Int J Hyperthermia 19(3): 267-294.
Dewhirst, M. W., Z. Vujaskovic, E. Jones, and D. Thrall 2005.
“Re-setting the biologic rationale for thermal therapy.” Int J
Hyperthermia 21(8): 779-90.
references
Amasha, H. M., A. P. Anderson, J. Conway, and D. C. Barber
1988. “Quantitative assessment of impedance tomography
for temperature measurements in microwave hyperther-
mia.” Clin Phys Physiol Meas 9 Suppl A: 49-53.
Blad, B., B. Persson, and K. Lindstrom 1992. “Quantitative assess-
ment of impedance tomography for temperature measure-
ments in hyperthermia.” Int J Hyperthermia 8(1): 33-43.
Bleier, A. R., F. A. Jolesz, M. S. Cohen, R. M. Weisskoff, J. J.
Dalcanton, N. Higuchi et al. 1991. “Real-time magnetic
resonance imaging of laser heat deposition in tissue.” Magn
Reson Med 21(1): 132-7.
Bloembergen, N., E. M. Purcrll and R. V. Pound 1947. “Relaxation
effects in nuclear magnetic resonance absorption.” Nature
Phys Rev 73: 679.
Bloembergen, N. P., E.M. Pound, R.V. 1948. “Relaxation effects
in nuclear magnetic resonance absorption.” Phys Rev 73:
679-712.
Bowman, R. R. 1976. “Probe for measuring temperature in
radio-frequency-heated material.” IEEE Transactions on
Microwave Theory and Techniques 24(1): 43-45.
Bruners, P., E. Levit, T. Penzkofer, P. Isfort, C. Ocklenburg, B.
Schmidt et al. 2010. “Multi-slice computed tomography:
A tool for non-invasive temperature measurement?” Int J
Hyperthermia 26(4): 359-65.
Buy, X., C. H. Tok, D. Szwarc, G. Bierry, and A. Gangi 2009.
“Thermal protection during percutaneous thermal ablation
procedures: Interest of carbon dioxide dissection and tem-
perature monitoring.” Cardiovasc Intervent Radiol 32(3):
529-34.
Cady, E. B., P. C. D'Souza, J. Penrice and A. Lorek 1995. “The esti-
mation of local brain temperature by in vivo 1H magnetic
resonance spectroscopy.” Magn Reson Med 33(6): 862-7.
Carr, H. Y. and E. M. Purcell 1954. “Effects of diffusion on free
precession in nuclear magnetic resonance experiments.”
Physical Review 94(3): 630.
Chakraborty, D. P. and I. A. Brezovich 1982. “Error sources affect-
ing thermocouple thermometry in RF electromagnetic
fields.” J Microw Power 17(1): 17-28.
Chen, J., B. L. Daniel, and K. B. Pauly 2006. “Investigation of
proton density for measuring tissue temperature.” J Magn
Reson Imaging 23(3): 430-4.
Search WWH ::




Custom Search