Biomedical Engineering Reference
In-Depth Information
Qian, X. M. and Nie, S. M. (2008) Single-molecule and single-
nanoparticle SERS: From fundamental mechanisms to
biomedical applications. Chemical Society Reviews, 37,
912-920.
Rabin, Y. (2002) Is intracellular hyperthermia superior to extra-
cellular hyperthermia in the thermal sense? International
Journal of Hyperthermia, 18, 194-202.
Rau, R. (2005) Have traditional DMARDs had their day? Clinical
Rheumatology, 24, 189-202.
Richardson, H. H., Carlson, M. T., Tandler, P. J. et al. (2009)
Experimental and theoretical studies of light-to-heat con-
version and collective heating effects in metal nanoparticle
solutions. Nano Letters, 9, 1139-1146.
Richardson, H. H., Hickman, Z. N., Govorov, A. O. et al. (2006)
Thermooptical properties of gold nanoparticles embedded
in ice: Characterization of heat generation and melting.
Nano Letters, 6, 783-788.
Sanvicens, N. and Marco, M. P. (2008) Multifunctional nanopar-
ticles—properties and prospects for their use in human
medicine. Trends in Biotechnology, 26, 425-433.
Sapareto, S. A., Hopwood, L. E., Dewey, W. C. et al. (1978) Effects
of hyperthermia on survival and progression of Chinese
hamster ovary cells. Cancer Research, 38, 393-400.
Sau, T. K. and Murphy, C. J. (2004) Room temperature, high-yield syn-
thesis of multiple shapes of gold nanoparticles in aqueous solu-
tion. Journal of the American Chemical Society, 126, 8648-8649.
Schatz, G. C. (2007) Using theory and computation to model
nanoscale properties. Proceedings of the National Academy
of Sciences, 104, 6885-6892.
Schwartz, J., Shetty, A., Price, R. et al. (2009) Feasibility study of
particle-assisted laser ablation of brain tumors in ortho-
topic canine model. Cancer Research, 69, 1659.
Shah, J., Aglyamov, S. R., Sokolov, K. et al. (2008a) Ultrasound
imaging to monitor photothermal therapy—feasibility
study. Opt Express, 16, 3776-85.
Shah, J., Park, S., Aglyamov, S. et al. (2008b) Photoacoustic imag-
ing and temperature measurement for photothermal cancer
therapy. Journal of Biomedical Optics, 13, 034024.
Shenoi, M., Shah, N., Griffin, G. et al. (2011) Nanoparticle pre-
conditioning for enhanced thermal therapies in cancer.
Nanomedicine , in press.
Song, C. (1984) Effect of local hyperthermia on blood flow and
microenvironment: A review. Cancer Research, 44, 4721s.
Srinivasan, R. (1986) Ablation of polymers and biological tissue
by ultraviolet lasers. Science, 234, 559.
Takeda, Y., Kondow, T. and Mafuné, F. (2006) Degradation of
protein in nanoplasma generated around gold nanopar-
ticles in solution by laser irradiation. J. Phys. Chem. B, 110,
2393-2397.
Tcherniak, A., Ha, J. W., Dominguez-Medina, S. et al. (2010)
Probing a century old prediction one plasmonic particle at
a time. Nano Letters, 10, 1398-1404.
Tjahjono, I. K. and Bayazitoglu, Y. (2008) Near-infrared light
heating of a slab by embedded nanoparticles. International
Journal of Heat and Mass Transfer, 51, 1505-1515.
Tong, L. and Cheng, J. (2009) Gold nanorod-mediated photo-
thermolysis induces apoptosis of macrophages via damage
of mitochondria. Nanomedicine, 4, 265-276.
Tong, L., Zhao, Y., Huff T. et al. (2007) Gold nanorods mediate
tumor cell death by compromising membrane integrity.
Advanced Materials, 19, 3136-3141.
Ungureanu, C., Amelink, A., Rayavarapu, R. G. et al. (2010)
Differential pathlength spectroscopy for the quantitation
of optical properties of gold nanoparticles. ACS Nano, 4,
4081-4089.
van sonnenberg, E., Mcmullen, W. N. and Solbiati, L. (2005)
Tumor ablation: Principles and practice, New York, New
York : Springer.
Vera, J. and Bayazitoglu, Y. (2009) Gold nanoshell density variation
with laser power for induced hyperthermia. International
Journal of Heat and Mass Transfer, 52, 564-573.
Vogel, A. and Venugopalan, V. (2003) Mechanisms of pulsed laser
ablation of biological tissues. Chem. Rev, 103, 577-644.
von Maltzahn, G., Park, J. H., Agrawal, A. et al. (2009)
Computationally guided photothermal tumor therapy
using long-circulating gold nanorod antennas. Cancer Res,
69, 3892-900.
Weissleder, R. (2001) A clearer vision for in vivo imaging. Nature
Biotechnology, 19, 316-316.
Welch, A. and Van Gemert, M. (1995) Optical-thermal response of
laser-irradiated tissue , Plenum Press New York.
Xu, X., Meade, A. and Bayazitoglu, Y. (2010) Fluence rate distri-
bution in laser-induced interstitial thermotherapy by mesh
free collocation. International Journal of Heat and Mass
Transfer, 53, 4017-4022.
Yan, C., Pattani, V., Tunnell, J. W. et al. (2010) Temperature-
induced unfolding of epidermal growth factor (EGF):
Insight from molecular dynamics simulation. Journal of
Molecular Graphics and Modelling, 29, 2-12.
Yu, Chang, S.-S., Lee, C.-L. et al. (1997) Gold nanorods:
Electrochemical synthesis and optical properties. Journal of
Physical Chemistry B, 101, 6661-6664.
Zharov, V. P., Galanzha, E. I., Shashkov, E. V. et al. (2007)
Photoacoustic flow cytometry: Principle and application
for real-time detection of circulating single nanoparticles,
pathogens, and contrast dyes in vivo . Journal of Biomedical
Optics, 12, 051503-14.
Zharov, V. P., Galitovskaya, E. N., Johnson, C. et al. (2005a)
Synergistic enhancement of selective nanophotothermoly-
sis with gold nanoclusters: Potential for cancer therapy.
Lasers in Surgery and Medicine, 37, 219-226.
Zharov, V. P., Letfullin, R. R. and Galitovskaya, E. N. (2005b)
Microbubbles-overlapping mode for laser killing of cancer
cells with absorbing nanoparticle clusters. Journal of Physics
D-Applied Physics, 38, 2571-2581.
Zharov, V. P., Mercer, K. E., Galitovskaya, E. N. et al. (2006)
Photothermal nanotherapeutics and nanodiagnostics for
selective killing of bacteria targeted with gold nanoparti-
cles. Biophys J, 90, 619-27.
Search WWH ::




Custom Search