Biomedical Engineering Reference
In-Depth Information
6. Stafford, R.J., D. Fuentes, A.A. Elliott, J.S. Weinberg, and K.
Ahrar, Laser-induced thermal therapy for tumor ablation.
Crit Rev Biomed Eng, 2010. 38 (1): p. 79-100.
7. Diederich, C.J., Thermal ablation and high-temperature
thermal therapy: Overview of technology and clinical
implementation. Int J Hyperthermia, 2005. 21 (8): p. 745-53.
8. Stauffer, P.R., Diederich, C.J., Seegenschmiedt, M.H.,
Interstitial heating technologies, in Principles and prac-
tices of thermoradiotherapy and thermochemotherapy , M.H.
Seegenschmiedt, P. Fessenden, and C.C. Vernon, Editors.
1995, Springer-Verlag: Berlin.
9. Lai, C.Y., D.E. Kruse, C.F. Caskey, D.N. Stephens, P.L.
Sutcliffe, and K.W. Ferrara, Noninvasive thermometry
assisted by a dual-function ultrasound transducer for mild
hyperthermia. IEEE Trans Ultrason Ferroelectr Freq Control,
2010. 57 (12): p. 2671-84.
10. Liu, D. and E.S. Ebbini, Real-time 2-D temperature imaging
using ultrasound. IEEE Trans Biomed Eng, 2010. 57 (1): p.
12-6.
11. Maleke, C. and E.E. Konofagou, In vivo feasibility of real-
time monitoring of focused ultrasound surgery (FUS) using
harmonic motion imaging (HMI). IEEE Trans Biomed Eng,
2010. 57 (1): p. 7-11.
12. Arnal, B., M. Pernot, and M. Tanter, Monitoring of ther-
mal therapy based on shear modulus changes: I. shear wave
thermometry. IEEE Trans Ultrason Ferroelectr Freq Control,
2011. 58 (2): p. 369-78.
13. Ribault, M., J.Y. Chapelon, D. Cathignol, and A. Gelet,
Differential attenuation imaging for the characterization of
high intensity focused ultrasound lesions. Ultrason Imaging,
1998. 20 (3): p. 160-77.
14. de Senneville, B.D., C. Mougenot, B. Quesson, I. Dragonu,
N. Grenier, and C.T. Moonen, MR thermometry for moni-
toring tumor ablation. Eur Radiol, 2007. 17 (9): p. 2401-10.
15. Quesson, B., J.A. de Zwart, and C.T. Moonen, Magnetic
resonance temperature imaging for guidance of thermo-
therapy. J Magn Reson Imaging, 2000. 12 (4): p. 525-33.
16. Rieke, V. and K. Butts Pauly, MR thermometry. J Magn
Reson Imaging, 2008. 27 (2): p. 376-90.
17. Rivens, I., A. Shaw, J. Civale, and H. Morris, Treatment
monitoring and thermometry for therapeutic focused ultra-
sound. Int J Hyperthermia, 2007. 23 (2): p. 121-39.
18. Hurwitz, M.D., I.D. Kaplan, G.K. Svensson, K. Hynynen,
and M.S. Hansen, Feasibility and patient tolerance of a
novel transrectal ultrasound hyperthermia system for treat-
ment of prostate cancer. Int J Hyperthermia, 2001. 17 (1): p.
31-7.
19. Fosmire, H., K. Hynynen, G.W. Drach, B. Stea, P. Swift, and
J.R. Cassady, Feasibility and toxicity of transrectal ultra-
sound hyperthermia in the treatment of locally advanced
adenocarcinoma of the prostate. Int J Radiat Oncol Biol
Phys , 1993. 26 (2): p. 253-9.
20. Diederich, C.J. and K. Hynynen, The development of intra-
cavitary ultrasonic applicators for hyperthermia: A design
and experimental study. Med Phys, 1990. 17 (4): p. 626-34.
21. Smith, N.B., M.T. Buchanan, and K. Hynynen, Transrectal
ultrasound applicator for prostate heating monitored using
MRI thermometry. Int J of Radiat Oncol, Biol, Phys, 1999.
43 (1): p. 217-25.
22. Smith, N.B., N.K. Merrilees, M. Dahleh, and K. Hynynen,
Control system for an MRI compatible intracavitary ultra-
sound array for thermal treatment of prostate disease. Int
J Hyperthermia , 2001. 17 (3): p. 271-82.
23. Silcox, C.E., R.C. Smith, R. King, N. McDannold, P.
Bromley, K. Walsh et al., MRI-guided ultrasonic heating
allows spatial control of exogenous luciferase in canine
prostate. Ultrasound Med Biol , 2005. 31 (7): p. 965-70.
24. Hurwitz, M.D., I.D. Kaplan, J.L. Hansen, S. Prokopios-
Davos, G.P. Topulos, K. Wishnow et al., Hyperthermia
combined with radiation in treatment of locally advanced
prostate cancer is associated with a favourable toxicity pro-
file. Int J Hyperthermia , 2005. 21 (7): p. 649-56.
25. Hurwitz, M.D., I.D. Kaplan, J.L. Hansen, S. Prokopios-
Davos, G.P. Topulos, K. Wishnow et al., Association of rec-
tal toxicity with thermal dose parameters in treatment of
locally advanced prostate cancer with radiation and hyper-
thermia. Int J Radiat Oncol Biol Phys , 2002. 53 (4): p. 913-8.
26. Hurwitz, M.D., J.L. Hansen, S. Prokopios-Davos, J. Manola,
Q. Wang, B.A. Bornstein et al., Hyperthermia combined
with radiation for the treatment of locally advanced pros-
tate cancer: Long-term results from Dana-Farber Cancer
Institute study 94-153 . Cancer , 2011. 117 (3): p. 510-6.
27. Crouzet, S., F.J. Murat, G. Pasticier, P. Cassier, J.Y. Chapelon,
and A. Gelet, High intensity focused ultrasound (HIFU) for
prostate cancer: Current clinical status, outcomes and future
perspectives. Int J Hyperthermia, 2010. 26 (8): p. 796-803.
28. Pichardo, S., A. Gelet, L. Curiel, S. Chesnais, and J.Y.
Chapelon, New integrated imaging high intensity focused
ultrasound probe for transrectal prostate cancer treatment.
Ultrasound Med Biol, 2008. 34 (7): p. 1105-16.
29. Warmuth, M., T. Johansson, and P. Mad, S ystematic review
of the efficacy and safety of high-intensity focussed ultra-
sound for the primary and salvage treatment of prostate
cancer. Eur Urol, 2010. 58 (6): p. 803-15.
30. Koch, M.O., T. Gardner, L. Cheng, R.J. Fedewa, R. Seip, and
N.T. Sanghvi, Phase I/II trial of high intensity focused ultra-
sound for the treatment of previously untreated localized
prostate cancer. J Urol , 2007. 178 (6): p. 2366-70; discussion
2370-1.
31. Madersbacher, S., M. Pedevilla, L. Vingers, M. Susani, and
M. Marberger, Effect of high-intensity focused ultrasound
on human prostate cancer in vivo. Cancer Research , 1995.
55 (15): p. 3346-51.
32. Madersbacher, S., C. Kratzik, M. Susani, and M. Marberger,
Tissue ablation in benign prostatic hyperplasia with high inten-
sity focused ultrasound. J Urol , 1994. 152 (6 Pt 1): p. 1956-60.
33. Sanghvi, N.T., F.J. Fry, R. Birhle, R.S. Foster, M.H. Phillips,
J. Syrus et al., Noninvasive surgery of prostate tissue by
high-intensity focused ultrasound. IEEE Trans Ultrason
Ferroelectr Freq Control 1996. 43 (6): p. 1099-110.
Search WWH ::




Custom Search