Biomedical Engineering Reference
In-Depth Information
impacted the clinical utilization of microwave ablation.
Additional developments are likely to continue this trend and,
as technologies improve, increased clinical utilization will
likely follow.
Brace, C.L. 2010a. Microwave tissue ablation: Biophysics, tech-
nology, and applications. Crit Rev Biomed Eng 38:65-78.
Brace, C.L., Diaz, T.A., Hinsahw, J.L. et al. 2010b. Tissue contraction
caused by radiofrequency and microwave ablation: A labora-
tory study in liver and lung. J Vasc Interv Radiol 21:1280-86.
Burkhardt, J.D., and Natale, A. 2009. New technologies in atrial
fibrillation ablation. Circulation 120:1533-41.
Cao, H., Vorperian, V.R., Tungjitkusolmun, S., Tsai, J.Z.,
Haemmerich, D., Choy, Y.B., and Webster, J.G. 2001. Flow
effect on lesion formation in RF cardiac catheter ablation.
IEEE T Bio-Med Eng 48:425-33.
Chen, M.H., Yang, W., Yan, K., Zou, M.W., Solbiati, L., Liu, J.B.,
and Dai, Y. 2004. Large liver tumors: Protocol for radio-
frequency ablation and its clinical application in 110
patients—mathematic model, overlapping mode, and elec-
trode placement process. Radiology 232:260-71.
Chin, L., and Sherar, M. 2001. Changes in dielectric properties of
ex vivo bovine liver at 915 MHz during heating. Phys Med
Biol 46:197-211.
Cooper, J., and Gimpelson, R.J. 2004. Summary of safety and
effectiveness data from FDA: A valuable source of infor-
mation on the performance of global endometrial ablation
devices. J Reprod Med 49:267-73.
Craciunescu, O.I., Das, S.K., McCauley, R.L. et al. 2001. 3D numeri-
cal reconstruction of the hyperthermia induced temperature
distribution in human sarcomas using DE-MRI measured
tissue perfusion: Validation against non-invasive MR tem-
perature measurements. Int J Hyperthermia 17:221-39.
Dewhirst, M.W., Viglianti, B.L., Lora-Michiels, M. et al. 2003. Basic
principles of thermal dosimetry and thermal thresholds
for tissue damage from hyperthermia. Int J Hyperthermia
19:267-94.
Diller, K.R., Valvano, J.W., and Pearce, J.A. 2000. CRC Handbook
of Thermal Engineering, ed. F. Kreith (Boca Raton: CRC
Press, 114-215).
Duck, F.A. 1990. Physical Properties of Tissue: A Comprehensive
Reference Book . Academic Press, London.
Epstein, B.R., and Foster, K.R. 1983. Anisotropy in the dielectric
properties of skeletal muscle. Med Biol Eng Comput 21:51-55.
Esrick, M.A., and McRae, D.A. 1994. The effect of hyperthermia-
induced tissue conductivity changes on electrical imped-
ance temperature mapping. Phys Med Biol 39:133-44.
Feldberg, I., and Cronin, N. 1998. A 9.2 GHz microwave applicator
for the treatment of menorrhagia. IEEE MTT-S 2:755-58.
Foster, K.R., and Schwan, H.P. 1989. Dielectric properties of tis-
sues and biological materials: A critical review. Crit Rev
Biomed Eng 17:25-104.
Fotopoulou, C., Hee Cho, C., Kraetschell, R. et al. 2010. Regional
abdominal hyperthermia combined with systemic che-
motherapy for the treatment of patients with ovarian can-
cer relapse: Results of a pilot study. Int J Hyperthermia
26:118-26.
Furse, C.M., and Iskander, M.F. 1989. Three-dimensional elec-
tromagnetic power deposition in tumors using interstitial
antenna arrays. IEEE Trans Biomed Eng 36:977-86.
references
Ahn, H., and Lee, K. 2005. Interstitial antennas tipped with reac-
tive load. IEEE Microwave Wireless Comp Lett 15:215-20.
Andreano, A., Huang, Y., Meloni, M.F., Lee, F.T. Jr., and Brace,
C.L. 2010. Microwaves create larger ablations than radio-
frequency when controlled for power in ex vivo tissue. Med
Phys 2010 37:2967-73.
Balanis, C.A. 1989. Advanced Engineering Electromagnetics . John
Wiley & Sons, New York.
Berjano, E.J. 2006. Theoretical modeling for radiofrequency abla-
tion: State-of-the-art and challenges for the future. Biomed
Eng Online 5:24.
Bertram, J.M., Yang, D., Converse, M.C., Webster, J.G., and Mahvi,
D.M. 2006. Antenna design for microwave hepatic ablation
using an axisymmetric electromagnetic model. Biomed Eng
Online February 27:5-15.
Bircan, C., and Barringer, S. 2002. Determination of protein dena-
turation of muscle foods using the dielectric properties. J
Food Sci 67:202-05.
Brace, C.L., Laeseke, P.F., van der Weide, D.W. and Lee, F.T. Jr.
2005. Microwave ablation with a triaxial antenna: Results
in ex vivo bovine liver. IEEE Trans Microw Theory Tech
53:215-20.
Brace, C.L., Laeseke, P.F., Sampson, L.A. et al. 2007a. Microwave
ablation with multiple simultaneously powered small-gauge
triaxial antennas: Results from an in vivo swine liver model.
Radiology 244:151-56.
Brace, C.L., Laeseke, P.F., Sampson, L.A. et al. 2007b. Microwave
ablation with a single small-gauge triaxial antenna: In vivo
porcine liver model. Radiology 242:435-40.
Brace, C.L., Laeseke, P.F., Sampson, L.A., van der Weide, D.W.,
and Lee, F.T. Jr. 2007c. Switched-mode microwave ablation:
Less dependence on tissue properties leads to more con-
sistent ablations than phased arrays. Radiological Society of
North America Annual Meeting , Chicago, IL.
Brace, C.L. 2008. Temperature-dependent dielectric properties of
liver tissue measured during thermal ablation: Toward an
improved numerical model. Conf Proc IEEE Eng Med Biol
Soc 1:230-33.
Brace, C.L., Hinsahw, J.L., Laeseke, P.F. et al. 2009a. Pulmonary
thermal ablation: Comparison of radiofrequency and
microwave devices by using gross pathologic and CT find-
ings in a swine model. Radiology 251:705-11.
Brace, C.L., Sampson, L.A., Hinsahw, J.L., Sandhu, N., and Lee,
F.T. Jr. 2009b. Radiofrequency ablation: Simultaneous appli-
cation of multiple electrodes via switching creates larger,
more confluent ablations than sequential application in a
large animal model. J Vasc Interv Radiol 20:118-24.
Search WWH ::




Custom Search