Biomedical Engineering Reference
In-Depth Information
66. J. Gellermann, W. Wlodarczyk, H. Ganter, J. Nadobny,
H. Fahling, M. Seebass, R. Felix, and P. Wust. A practical
approach to thermography in a hyperthermia/magnetic
resonance hybrid system: Validation in a heterogeneous
phantom. Int J Radiat Oncol Biol Phys , 61(1):267-77, 2005.
67. J. Gellermann, P. Wust, D. Stalling, M. Seebass, J. Nadobny,
R. Beck, H. Hege, P. Deuflhard, and R. Felix. Clinical
evaluation and verification of the hyperthermia treatment
planning system hyperplan. Int J Radiat Oncol Biol Phys ,
47(4):1145-56, 2000.
68. S. Gerber. Perfusionsmodellierung in menschlichen
Tumoren. Masterthesis Freie Universität Berlin, 2007.
69. U. Gneveckow, A. Jordan, R. Scholz, J. Gellermann, A.
Feussner, C. H. Cho, M. Johannsen, K. Maier-Hauff, and P.
Wust. 3-dimensional calculation of the temperature distri-
bution during thermotherapy with magnetic nanoparticles.
Topic of Abstracts of the 23rd Annual Meeting of the ESHO,
Berlin, Germany (ESHO-06), p. 51, 2006.
70. D. Haemmerich and P. F. Laeseke. Thermal tumour abla-
tion: Devices, clinical applications and future directions. Int
J Hyperthermia , 21(8):755-60, 2005.
71. D. Haemmerich, R. Ozkan, S. Tungjitkusolmun, J. Z. Tsai,
D. M. Mahvi, S. T. Staelin, and J. G. Webster. Changes in
electrical resistivity of swine liver after occlusion and post-
mortem. Med Biol Eng Comput , 40(1):29-33, 2002.
72. D. Haemmerich, S. T. Staelin, J. Z. Tsai, S. Tungjitkusolmun,
D. M. Mahvi, and J. G. Webster. In vivo electrical conduc-
tivity of hepatic tumours. Physiol Meas , 24(2):251-60,
73. D. Haemmerich, S. Tungjitkusolmun, S. T. Staelin, F. T. Lee
Jr., D. M. Mahvi, and J. G. Webster. Finite-element analysis
of hepatic multiple probe radio-frequency ablation. IEEE
Trans Biomed Eng , 49(8):836-42, 2002.
74. D. Haemmerich, J. G. Webster, and D. M. Mahvi. Thermal
dose versus isotherm as lesion boundary estimator for car-
diac and hepatic radio-frequency ablation. Proc. 25th Ann.
Intern. Conf. IEEE EMBS, pp. 134-137, 2003.
75. D. Haemmerich and B. J. Wood. Hepatic radiofrequency
ablation at low frequencies preferentially heats tumour tis-
sue. Int J Hyperthermia , 22(7):563-74, 2006.
76. J. W. Hand. The current status of microwave induced hyper-
thermia and radiotherapy for the treatment of recurrent
breast cancer. Application of Microwaves in Medicine, IEE
Colloquium on, pp. 1-6, 1995.
77. L. J. Hayes, K. R. Diller, J. A. Pearce, M. R. Schick, and D.
P. Colvin. Prediction of transient temperature fields and
cumulative tissue destruction for radio frequency heating
of a tumor. Med Phys , 12(6):684-92, 1985.
78. Q. He, L. Zhu, D. E. Lemons, and S. Weinbaum. Experimental
measurements of the temperature variation along artery-
vein pairs from 200 to 1000 microns diameter in rat hind
limb. J Biomech Eng , 124(6):656-61, 2002.
79. X. He and J. C. Bischof. Quantification of temperature and
injury response in thermal therapy and cryosurgery. Crit
Rev Biomed Eng , 31(5-6):355-422, 2003.
80. T. Heinonen and P. Dastidar. Segmentation of voxel based
medical images. Int J BioEM , 3(2), 2001.
81. A. Hirata, T. Asano, and O. Fujiwara. FDTD analysis of
human body-core temperature elevation due to RF far-field
energy prescribed in the ICNIRP guidelines. Phys Med Biol
52:5013-23, 2007.
82. S. N. Hornsleth. Radiofrequency regional hyperthermia.
Thesis, Aalborg University, 1996.
83. S. Humphries, K. Johnson, K. Rick, N. Goldberg, and Z.
J. Liu. Three-dimensional finite-element code for elec-
trosurgery and thermal ablation simulations. Progress in
Biomedical Optics and Imaging , 6:181, 2005.
84. M. K. Jain and P. D. Wolf. A three-dimensional finite element
model of radiofrequency ablation with blood flow and its
experimental validation. Ann Biomed Eng , 28(9):1075-84,
85. R. K. Jain, F. H. Grantham, and P. M. Gullino. Blood flow
and heat transfer in Walker 256 mammary carcinoma. J
Natl Cancer Inst , 62(4):927-33, 1979.
86. B. J. James and D. M. Sullivan. Creation of three-dimensional
patient models for hyperthermia treatment planning. IEEE
Trans Biomed Eng , 39(3):238-42, 1992.
87. B. J. James and D. M. Sullivan. Direct use of CT scans for
hyperthermia treatment planning. IEEE Trans Biomed Eng ,
39(8):845-51, 1992.
88. D. N. Kinsht. Modeling of processes of heat transfer in
wholebody hyperthermia. Biofizika, , 51(4):738-42, 2006.
89. C. Kirbas and F. K. H. Quek. A review of vessel extrac-
tion techniques and algorithms. ACM Computing Surveys ,
36(2):81-121, 2004.
90. M. Knudsen and U. Hartmann. Optimal temperature con-
trol with phased array hyperthermia system. IEEE Trans
Microw Theory Techn , 34(5):597-603, 1986.
91. T. Köhler. Effiziente Algorithmen für die Optimierung
der Therapie-Planung zur regionalen Hyperthermia.
Dissertation Universitaet Potsdam, 1998.
92. T. Köhler, P. Maass, P. Wust, and M. Seebass. A fast algo-
rithm to find optimal controls of multiantenna applicators in
regional hyperthermia. Phys Med Biol , 46(9):2503-14, 2001.
93. H. P. Kok, P. M. Van Haaren, J. B. Van de Kamer, J. Wiersma,
J. D. Van Dijk, and J. Crezee. High-resolution temperature
based optimization for hyperthermia treatment planning.
Phys Med Biol , 50(13):3127-41, 2005.
94. H. P. Kok, P. M. A. van Haaren, J. B. van de Kamer, P. J.
Zum Vrde Sive Vrding, J. Wiersma, M. C. C. M. Hulshof, E.
D. Geijsen, J. J. B. van Lanschot, and J. Crezee. Prospective
treatment planning to improve locoregional hyperthermia
for oesophageal cancer. Int J Hyperth ermia, 22(5):375-89,
95. M. C. Kolios, M. D. Sherar, and J. W. Hunt. Large blood ves-
sel cooling in heated tissues: A numerical study. Phys Med
Biol , 40(4):477-94, 1995.
96. M. C. Kolios, M. D. Sherar, and J. W. Hunt. Large blood ves-
sel cooling in heated tissues: A numerical study. Phys Med
Biol , 40(4):477-94, 1995.
Search WWH ::

Custom Search