Biology Reference
In-Depth Information
68. Taguchi T, Takeyama H, Matsunaga T. Immuno-capture of Cryptosporidium parvum
using micro-well array. Biosensors and Bioelectronics 2005; 20 :2276-82 .
69. Taguchi T, Arakaki A, Takeyama H, Haraguchi S, Yoshino M, Kaneko M, et al. Detection
of Cryptosporidium parvum oocysts using a microfluidic device equipped with the SUS
micromesh and FITC-labeled antibody. Biotechnology and Bioengineering 2007; 96 (2):
272-80 .
70. Zhu L, Zhang Q, Feng HH, Ang S, Chauc FS, Liu WT. Filter-based microfluidic
device as a platform for immunofluorescent assay of microbial cells. Lab on a Chip
2004; 4 (4):337-41 .
71. Liu J, Qiao H, Liu C, Xu Z, Li Y, Wang L. Plasma assisted thermal bonding for PMMA
microfluidic chips with integrated metal microelectrodes. Sensors and Actuators B:
Chemical 2009; 141 (2):646-51 .
72. Chen L, Choo J. Recent advances in surface-enhanced Raman scattering detection
technology for microfluidic chips. Electrophoresis 2008; 29 :1815-28 .
73. Tung Y-C, Zhang M, Lin C-T, Kurabayashi K, Skerlos SJ. PDMS-based opto-fluidic
micro flow cytometer with two-color, multi-angle fluorescence detection capability
using PIN photodiodes. Sensors and Actuators B: Chemical 2004; 98 (2-3):356-67 .
74. Li Y, Su X-L. Microfluidics-based optical biosensing method for rapid detection
of Escherichia coli O157:H7. Journal of Rapid Methods and Automation in Microbiology
2006; 14 :96-109 .
75. Sakamoto C, Yamaguchi N, Nasu M. Rapid and simple quantification of bacterial cells by
using a microfluidic device. Applied and Environmental Microbiology 2005; 71 (2):1117-21 .
76. Yamaguchi N, Torii M, Uebayashi Y, Nasu M. Rapid, semiautomated quantification
of bacterial cells in freshwater by using a microfluidic device for on-chip staining and
counting. Applied and Environmental Microbiology 2011; 77 (4):1536-9 .
77. Varshney M, Li Y, Srinivasan B, Tung S, Erf GF, Slavik MF, et al. A microfluidic filter
biochip-based chemiluminescence biosensing method for detection of Escherichia coli
O157:H7. Transactions of the ASABE 2006; 49 (6):2061-8 .
78. Karsunke XY, Niessner R, Seidel M. Development of a multichannel flow-through
chemiluminescence microarray chip for parallel calibration and detection of patho-
genic bacteria. Analytical and Bioanalytical Chemistry 2009; 395 (6):1623-30 .
79. Han J-H, Heinze BC, Yoon J-Y. Single cell level detection of Escherichia coli in micro-
fluidic device. Biosensors and Bioelectronics 2008; 23 (8):1303-6 .
80. You DJ, Geshell KJ, Yoon JY. Direct and sensitive detection of foodborne pathogens
within fresh produce samples using a field-deployable handheld device. Biosensors and
Bioelectronics 2011; 28 :399-406 .
81. Marcoux PR, Dupoy M, Mathey R, Novelli-Rousseau A, Heran V, Morales S, et al.
Micro-confinement of bacteria into w/o emulsion droplets for rapid detection and enu-
meration. Colliodals and Surfaces A: Physicochemical and Engineering Aspects 2011; 377 :54-62 .
82. Connelly JT, Kondapalli S, Skoupi M, Parker JSL, Kirby BJ, Baeumner AJ. Micro-
total analysis system for virus detection: microfluidic pre-concentration coupled to
liposome-based detection. Analytical and Bioanalytical Chemistry 2012; 401 :305-23 .
83. Gomez R, Bashir R, Sarikaya A, Ladisch MR, Sturgis J, Robinson JP, et al. Microfluidic
biochip for impedance spectroscopy of biologic species. Biomedical Microdevices 2001; 3 :
201-9 .
84. Mannoor MS, Zhang S, Link J, McAlpine MC. Electrical detection of pathogenic
bacteria via immobilized antimicrobial peptides. Proceedings of the National Academy of
Sciences of the United States of America 2010 .
85. Squires TM, Messinger RJ, Manalis SR. Making it stick: convection, reaction and dif-
fusion in surface-based biosensors. Nature Biotechnology 2008; 26 (4):417-26 .
86. Ligler FS. A perspective on optical biosensors and integrated sensor systems. Analytical
Chemistry 2009; 81 (2):519-26 .
Search WWH ::




Custom Search