Biology Reference
In-Depth Information
47. Pihl J, Sinclair J, Sahlin E, Karlsson M, Petterson F, Olofsson J, et al. Microfluidic gradi-
ent-generating device for pharmacological profiling. Analytical Chemistry 2005; 77 (13):
3897-903 .
48. Bringer MR, Gerdts CJ, Song H, Tice JD, Ismagilov RF. Microfluidic systems for
chemical kinetics that rely on chaotic mixing in droplets. Philosophical Transactions Series
A, Mathematical, Physical and Engineering Sciences 2004; 362 (1818):1087-104 .
49. McDonald JC, Chabinyc ML, Metallo SJ, Anderson JR, Stroock AD, Whitesides GM.
Prototyping of microfluidic devices in poly(dimethylsiloxane) using solid-object print-
ing. Analytical Chemistry 2002; 74 (7):1537-45 .
50. Stroock AD, Dertinger SK, Ajdari A, Mezic I, Stone HA, Whitesides GM. Chaotic
mixer for microchannels. Science 2002; 295 (5555):647-51 .
51. Stroock AD, Dertinger SK, Whitesides GM, Ajdari A. Patterning flows using grooved
surfaces. Analytical Chemistry 2002; 74 (20):5306-12 .
52. Groisman A, Lobo C, Cho H, Campbell JK, Dufour YS, Stevens AM, et al. A microfluidic
chemostat for experiments with bacterial and yeast cells. Nature Methods 2005; 2 (9):685-9 .
53. Mairhofer J, Roppert K, Ertl P. Microfluidic systems for pathogen sensing: a review.
Sensors 2009; 9 :4804-23 .
54. Yager P, Edwards T, Fu E, Helton K, Nelson K, Tam MR, et al. Microfluidic diagnostic
technologies for global public health. Nature 2006; 422 :412 .
55. Chen P, Feng X, Liu BF. Microfluidic chips for cell sorting. Frontiers in Bioscience
2008; 13 :2464-83 .
56. Kersaudy-Kerhoas M, Dhariwal R, Desmulliez MPY. Recent advances in micropar-
ticle continuous separation. IET Nanobiotechnology 2008; 2 (1):1-3 .
57. Madou M, Zoval J, Jia G, Kido H, Kim J, Kim N. Lab on a CD. Annual Review of Bio-
medical Engineering 2006; 8 :601-28 .
58. Dharmarisi U, Witek MA, Adams AA, Osiri JK, Hupert ML, Bianchi TS, et al. Enrich-
ment and detection of Escherichia coli O157:H7 from water samples using an antibody
modified microfluidic chip. Analytical Chemistry 2010; 82 (7):2844-9 .
59. Guan X, Zhang H, Bi Y, Zhang L, Hao D. Rapid detection of pathogens using anti-
body-coated microbeads with bioluminescence in microfluidic chips. Biomedical Micro-
devices 2012; 12 :683-91 .
60. Ramadan Q, Christophe L, Teo W, ShuJun L, Hua FH. Flow-through immunomag-
netic separation system for waterborne pathogen isolation and detection: application to
Giardia and Cryptosporidium cell isolation. Analytica Chimica Acta 2010; 673 (1):101-8 .
61. Agrawal S, Morarka A, Bodas D, Paknikar KM. Multiplexed detection of waterborne
pathogens in circular microfluidics. Applied Biochemical Biotechnological 2012 .
62. Goater AD, Burt JPH, Pethig R. A combined travelling wave dielectrophoresis and
electrorotation device: applied to the concentration and viability determination of
Cryptosporidium . Journal of Physics D: Applied Physics 1997; 30 :L65-9 .
63. Cabrera CR, Yager P. Continuous concentration of bacteria in a microfluidic flow cell
using electrokinetic techniques. Electrophoresis 2001; 22 :355-62 .
64. Gomez-Sjoberg R, Morisette DT, Bashir R. Impedance microbiology-on-a-chip:
microfluidic bioprocessor for rapid detection of bacterial metabolism. Journal of Micro-
electromechinical Systems 2005; 14 :829-38 .
65. Lapizco-Encinas BH, Davalos RV, Simmons BA, Cummings EB, Fintschenko Y. An
insulator-based (electrodeless) dielectrophoretic concentrator for microbes in water.
Journal of Microbiological Methods 2005; 62 (3):317-26 .
66. Cho Y-K, Kim S, Lee K, Park C, Lee J-G, Ko C . Bacteria concentration using a
membrane type insulator-based dielectrophoresis in a plastic chip. Electrophoresis
2009; 30 :3153-9 .
67. Braff WA. Manipulation of bacteria using a three dimensional insulator based dielectrophoresis .
Massachusetts Institute of Technology; 2011 .
Search WWH ::




Custom Search