Biology Reference
In-Depth Information
REFERENCES
1 . Beebe DJ, Mensing GA, Walker GM. Physics and applications of microfluidics in biol-
o g y. Annual Review of Biomedical Engineering 2002; 4 :261-86 .
2 . Chow KS, Du H. Dielectrophoretic characterization and trapping of different water-
borne pathogen in continuous flow manner. Sensors and Actuators A 2011; 170 :24-31 .
3 . Yoon JY, Kim B. Lab-on-a-Chip pathogen sensors for food safety. Sensors
2012; 12 :10713-41 .
4 . Lui C, Cady NC, Batt CA. Nucleic acid-based detection of bacterial pathogens using
integrated microfluidic platform systems. Sensors 2009; 9 :3713-44 .
5 . Bridle H, Olofsson J, Jesorka A, Orwar O. Automated control of local solution environ-
ments in open-volume microfluidics. Analytical Chemistry 2007; 79 (24):9286-93 .
6 . Ng JM, Gitlin I, Stroock AD, Whitesides GM. Components for integrated
poly(dimethylsiloxane) microfluidic systems. Electrophoresis 2002; 23 (20):3461-73 .
7 . Duffy DC, McDonald JC, Schueller OJA, Whitesides GM. Rapid prototyping of
microfluidic systems in poly(dimethylsiloxane). Analytical Chemistry 1998; 70 (23):4974-
84 .
8 . Sia SK, Whitesides GM. Microfluidic devices fabricated in poly(dimethylsiloxane) for
biological studies. Electrophoresis 2003; 24 (21):3563-76 .
9 . Haubert K, Drier T, Beebe DJ. PDMS bonding by means of a portable, low-cost corna
system. Lab on a Chip 2006; 6 :1548-9 .
10. Byung-Ho J, Van Lerberghe LM, Motsegood KM, Beebe DJ. Three-dimensional
micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer. Journal of Micro-
electromechanical Systems 2000; 9 (1):76-81 .
11. Christensen AM, Chang-Yen DA, Gale BK. Characterisation of interconnects used in
PDMS microfluidic systems. Journal of Micromechanics and Microengineering 2005; 15 :928-
34 .
12. Quake SR, Scherer A. From micro- to nanofabrication with soft materials. Science
2000; 290 :1536-40 .
13. Holden MA, Kumar S, Beskok A, Cremer PS. Microfluidic diffusion diluter: bulging of
PDMS microchannels under pressure-driven flow. Journal of Micromechanics and Micro-
engineering 2003; 13 :412-8 .
14. Lee JN, Park C, Whitesides GM. Solvent compatibility of poly(dimethylsiloxane)-
based microfluidic devices. Analytical Chemistry 2003; 75 (23):6544-54 .
15. Ocvirk G, Munroe M, Tang T, Oleschuk R, Westra K, Harrison DJ. Electrokinetic
control of fluid flow in native poly(dimethylsiloxane) capillary electrophoresis devices.
Electrophoresis 2000; 21 (1):107-15 .
16. Toepke MW, Beebe DJ. PDMS absorption of small molecules and consequences in
microfluidic applications. Lab on a Chip 2006; 6 (12):1484-6 .
17. Makamba H, Kim JH, Lim K, Park N, Hahn JH. Surface modification of
poly(dimethylsiloxane) microchannels. Electrophoresis 2003; 24 (21):3607-19 .
18. Holden MA, Jung SY, Cremer PS. Patterning enzymes inside microfluidic channels via
photoattachment chemistry. Analytical Chemistry 2004; 76 (7):1838-43 .
19. Gliere A, Delattre C. Modeling and fabrication of capillary stop valves for planar
microfluidic systems. Sensors and Actuators A 2006; 130-131 :601-8 .
20. Suk JW, Cho J-H. Capillary flow control using hydrophobic patterns. Journal of Micro-
mechanics and Microengineering 2007; 17 :N11-5 .
21. Squires TM, Quake SR. Microfluidics: fluid physics at the nanoliter scale. Reviews of
Modern Physics 2005; 77 (3):977-1026 .
22. Brody JP, Yager P, Goldstein RE, Austin RH. Biotechnology at low Reynolds num-
bers. Biophysical Journal 1996; 71 (6):3430-41 .
23. Atkins PW. Physical chemistry . 5th ed. Oxford University Press; 1994 .
Search WWH ::




Custom Search