Biology Reference
In-Depth Information
9.5 REFERENCES
1. Kaittanis C, Santra S, Perez JM. Emerging nanotechnology-based strategies for the identi-
fication of microbial pathogenesis. Advanced Drug Delivery Reviews;62(4-5):408-423.
2 . Ray PC, Khan SA, Singh AK, Senapati D, Fan Z. Nanomaterials for targeted detection
and photothermal killing of bacteria. Chem Soc Rev 2012; 41 :3193-209 .
3 . Upadhyayula VKK. Functionalized gold nanoparticle supported sensory mechanisms
applied in detection of chemical and biological threat agents: A review. Analytica Chimica
Acta 2012; 715 (0):1-8 .
4 . Mody VV, Siwale R, Singh AK, Mody HR. Introduction to metallic nanoparticles. Jour-
nal of Pharmacy and BioAllied Sciences 2010; 2 (4):282-9 .
5 . Low A, Bansal V. A visual tutorial on the synthesis of gold nanoparticles. Biomedical Imag-
ing and Intervention Journal 2010; 6 (1):e9 .
6. Tallury P, Malhotra A, Byrne LM, Santra S. Nanobioimaging and sensing of infectious
diseases. Advanced Drug Delivery Reviews;62(4-5):424-437.
7 . Kulthong K, Srisung S, Boonpavanitchakul K, Kangwansupamonkon W, Mani-
ratanachote R. Determination of silver nanoparticle release from antibacterial fabrics
into artificial sweat. Part Fibre Toxicol 2010; 7 (8):1743-8977 .
8 . Chao JB, Liu JF, Yu S J, et al. Speciation analysis of silver nanoparticles and silver ions in
antibacterial products and environmental waters via cloud point extraction-based sepa-
ration. Analytical Chemistry 2011; 83 :6875-82 .
9 . Silver S, Phung le T, Silver G. Silver as biocides in burn and wound dressings and bacte-
rial resistance to silver compounds. J Ind Microbiol Biotechnol 2006; 33 :627-34 .
10. Nowack B, Krug H, Height M. 120Years of Nanosilver History: Implications for Policy Mak-
ers 2011; 45 :1177 .
11. Dankovich TA, Gray DG. Bactericidal Paper Impregnated with Silver Nanoparticles for
Point-of-Use Water Treatment. Environ Sci Technol 2011; 45 :1992-8 .
12. Sharma VK, Yngard RA, Lin Y. Silver nanoparticles: green synthesis and their antimicro-
bial activities. Advances in Colloid and Interface Science 2009; 145 (1-2):83-96 .
13. Arya H, Kaul Z, Wadhwa R.
14. Gilmartin N, O'Kennedy R. Nanobiotechnologies for the detection and reduction of
pathogens. Enzyme and Microbial Technology 2012; 50 (2):87-95 .
15. Arumugam PU, Chen H, Siddiqui S, et al. Wafer-scale fabrication of patterned carbon
nanofiber nanoelectrode arrays: A route for development of multiplexed, ultrasensitive
disposable biosensors. Biosensors and Bioelectronics 2009; 24 (9):2818-24 .
16. Zhang H, Zhao H, Liu P, Zhang S, Li G. Direct growth of hierarchically structured
titanate nanotube filtration membrane for removal of waterborne pathogens. Journal of
Membrane Science 2009; 343 (1-2):212-8 .
17. Brady-Estevez AS, Nguyen TH, Gutierrez L, Elimelech M. Impact of solution chemistry on
viral removal by a single-walled carbon nanotube filter. Water Research 2010; 44 (13):3773-80 .
18. Wegmann M, Michen B, Luxbacher T, Fritsch J, Graule T. Modification of ceramic
microfilters with colloidal zirconia to promote the adsorption of viruses from water.
Water Research 2008; 42 (6-7):1726-34 .
19. Li D, Shi H, Jiang SC. Concentration of viruses from environmental waters using nano-
alumina fiber filters. Journal of Microbiological Methods 2012; 81 :33-8 .
20. Sun X, Danumah C, Liu Y, Boluk Y. Flocculation of bacteria by depletion interactions
due to rod-shaped cellulose nanocrystals. Chemical Engineering Journal;198-199(0):
476-481.
21. Eboigbodin KE, Newton JR, Routh AAF, Biggs CA. Role of nonadsorbing polymers in
bacterial aggregation. Langmuir;21:12315-12319.
22. Varshney M, Yang LJ, Su XI, Li YB. Magnetic nanoparticle-antibody conjugates for
the separation of Escherichia coli O157:H7 in ground beef. Journal of Food Protection
2005; 68 :1804-11 .
Search WWH ::




Custom Search