Biology Reference
In-Depth Information
110. Charkhkar H, Knaack GL, Gnade BE, Keefer EW, Pancrazio JJ. Development and
demonstration of a disposable low-cost microelectrode array for cultured neuronal
network recording. Sensors and Actuators B: Chemical 2012; 161 :655-60 .
111. Seymour J, Langhals N, Anderson D, Kipke D. Novel multi-sided, microelectrode
arrays for implantable neural applications. Biomedical Microdevices 2011; 13 :441-51 .
112. Lee D, Cui T. Low-cost, transparent, and flexible single-walled carbon nanotube nano-
composite based ion-sensitive field-effect transistors for pH/glucose sensing. Biosensors
and Bioelectronics 2010; 25 :2259-64 .
113. Péter M, Schüler T, Furthner F, Rensing PA, van Heck GT, Schoo HFM, et al. Flexible
biochips for detection of biomolecules. Langmuir 2009; 25 :5384-90 .
114. Hassler BL, Amundsen TJ, Zeikus JG, Lee I, Worden RM. Versatile bioelectronic inter-
faces on flexible non-conductive substrates. Biosensors and Bioelectronics 2008; 23 :1481-7 .
115. Priano G, González G, Günther M, Battaglini F. Disposable gold electrode array for
simultaneous electrochemical studies. Electroanalysis 2008; 20 :91-7 .
116. Setti L, Fraleoni-Morgera A, Ballarin B, Filippini A, Frascaro D, Piana C. An ampero-
metric glucose biosensor prototype fabricated by thermal inkjet printing. Biosensors and
Bioelectronics 2005; 20 :2019-26 .
117. Gamerith S, Klug A, Scheiber H, Scherf U, Moderegger E, List EJW. Direct ink-jet
printing of Ag-Cu nanoparticle and Ag-precursor based electrodes for OFET applica-
tions. Advanced Functional Materials 2007; 17 :3111-8 .
118. Wang J, Musameh M. Carbon nanotube screen-printed electrochemical sensors. The
Analyst 2004; 129 :1 .
119. Schuler T, Asmus T, Fritzsche W, Möller R. Screen printing as cost-efficient fabrica-
tion method for DNA-chips with electrical readout for detection of viral DNA. Bio-
sensors and Bioelectronics 2009; 24 :2077-84 .
120. Newman JD, Turner APF. Home blood glucose biosensors: a commercial perspective.
Biosensors and Bioelectronics 2005; 20 :2435-53 .
121. Adlam DJ, Woolley DE. A multiwell electrochemical biosensor for real-time monitor-
ing of the behavioural changes of cells in vitro. Sensors 2010; 10 :3732-40 .
122. Brischwein M, Herrmann S, Vonau W, Berthold F, Grothe H, Motrescu ER, et al.
Electric cell-substrate impedance sensing with screen printed electrode structures. Lab
on a Chip 2006; 6 :819-22 .
123. Pemberton RM, Xu J, Pittson R, Drago GA, Griffiths J, Jackson SK, et al. A screen-
printed microband glucose biosensor system for real-time monitoring of toxicity in
cell culture. Biosensors and Bioelectronics 2011; 26 :2448-53 .
124. Jensen GC, Krause CE, Sotzing GA, Rusling JF. Inkjet-printed gold nanoparticle elec-
trochemical arrays on plastic: application to immunodetection of a cancer biomarker
protein. Physical Chemistry Chemical Physics 2011; 13 :4888-94 .
125. Huang X-J, O'Mahony AM, Compton RG. Microelectrode arrays for electrochemis-
try: approaches to fabrication. Small 2009; 5 :776-88 .
126. Lim SC, Kim SH, Yang YS, Lee MY, Nam SY, Ko J B. Organic thin-film transistor using
high-resolution screen-printed electrodes. Japanese Journal of Applied Physics 2009; 48 :081503 .
127. Gili E, Caironi M, Sirringhaus H. Organic integrated complementary inverters with
ink-jet printed source/drain electrodes and sub-micron channels. Applied Physics Letters
2012; 100 :123303 .
128. Zhang L, Liu H, Zhao Y, Sun X, Wen Y, Guo Y, et al. Inkjet printing high-resolution,
large-area graphene patterns by coffee-ring lithography. Advanced Materials 2012; 24 :
436-40 .
129. Bae S, Kim H, Lee Y, Xu X, Park J-S, Zheng Y, et al. Roll-to-roll production of
30-inch graphene films for transparent electrodes. Nature Nanotechnology 2010; 5 :574-8 .
130. Kafka J, Larsen NB, Skaarup S, Geschke O. Fabrication of an all-polymer electro-
chemical sensor by using a one-step hot embossing procedure. Microelectronic Engineering
2010; 87 :1239-41 .
Search WWH ::




Custom Search