Biomedical Engineering Reference
In-Depth Information
In this case the normal on a plane has three components:
n
=
n x
e x +
n y
e y +
n z
e z ,
therefore
s
= σ ·
n
= σ xx
e x
e x + σ yy
e y
e y + σ zz
e z
e z
+ σ xy (
e x
e y +
e y
e x )
+ σ xz (
e x
e z +
e z
e x )
e y ) ·
+ σ yz (
e y
e z +
e z
( n x
e x +
n y
e y +
n z
e z )
= σ xx n x
e x + σ yy n y
e y + σ zz n z
e z
+ σ xy ( n y
e x +
n x
e y )
+ σ xz ( n z
e x +
n x
e z )
+ σ yz ( n z e y + n y e z ) .
(8.56)
Hence the components of the stress vector s = s x e x + s y e y + s z e z satisfy
s x = σ xx n x + σ xy n y + σ xz n z
s y = σ xy n x + σ yy n y + σ yz n z
s z = σ xz n x + σ yz n y + σ zz n z .
(8.57)
Application of Eq. ( 8.55 ) and using
s x
s y
s z
n x
n y
n z
=
,
=
,
(8.58)
gives an equivalent, but much shorter, expression for Eq. ( 8.57 ):
= σ .
(8.59)
If all the shear stress components are zero, i.e.: σ xy = σ xz = σ yz = 0, and all the
normal stresses are equal, i.e. σ xx
= σ yy
= σ zz , this normal stress is called the
pressure p such that
p =− σ xx =− σ yy =− σ zz ,
(8.60)
while
σ =− p (
e x e x + e y e y + e z e z )
=− p I ,
(8.61)
with I the unit tensor. This is illustrated in Fig. 8.13 .
8.5 Principal stresses and principal stress directions
Assume, that in a certain point of the material volume the stress state is known by
specification of the tensor
σ
. One might ask, whether it is possible to chose the
 
Search WWH ::




Custom Search