Digital Signal Processing Reference
In-Depth Information
where h 1 (
and h 2 (
are elements of the equivalent channel matrices in Equa-
tion ( 3.6 ). Equation ( 3.7 ) can be rewritten as
i
,
j
)
i
,
j
)
= H 1
a 2 (
a 1 (
1
,
1
)
1
,
1
)
a 2 (
a 1 (
2
,
1
)
2
,
1
)
H 2
(3.8)
a 2 (
a 1 (
3
,
1
)
3
,
1
)
a 2 (
a 1 (
4
,
1
)
4
,
1
)
where
h 1 (
2
,
1
)
h 1 (
2
,
2
)
h 1 (
2
,
3
)
h 1 (
2
,
4
)
h 1 (
1
,
1
)
h 1 (
1
,
2
)
h 1 (
1
,
3
)
h 1 (
1
,
4
)
H 1 =
(3.9)
h 1 (
4
,
1
)
h 1 (
4
,
2
)
h 1 (
4
,
3
)
h 1 (
4
,
4
)
h 1 (
3
,
1
)
h 1 (
3
,
2
)
h 1 (
3
,
3
)
h 1 (
3
,
4
)
Now let
H 1 =
H 1
2
V H
Q
=
U
(3.10)
where we have made the singular value decomposition. It has been proved in [ 2 ] that
=
=
a 1 (
a 2 (
1
,
1
)
1
,
1
)
a 1 (
a 2 (
1
(
2
,
1
)
2
,
1
)
) ,
v
(
i
u
(
i
),
η =
) ,
i
=
1
,
2
,
3
,
4
a 1 (
a 2 (
3
,
1
)
3
,
1
)
i
,
i
a 1 (
a 2 (
4
,
1
)
4
,
1
)
(3.11)
a 1 (
1
,
1
)
a 1 (
2
,
1
)
will satisfy Equation ( 3.8 ). There are four different choices for
and
a 1 (
,
)
3
1
a 1 (
4
,
1
)
a 2 (
1
,
1
)
a 2 (
2
,
1
)
depending on which i we pick. Different choices of i result in different
a 2 (
3
,
1
)
a 2 (
4
,
1
)
performances. For given channel matrices H 1 and H 2 ,attimeslot1,welet v =
) ,
v
(
i
, such that the norm of H 1 v is the largest, i.e.,
i
∈{
1
,
2
,
3
,
4
}
v =
) ||
2
F
arg
max
4 ||
H 1 v
(
i
(3.12)
) ,
v
(
i
i
=
1
,
2
,
3
,
ThenforUser1,attimeslot1,welet
=
=
,
a 1 (
a 1 (
, i )
a 1 (
,
)
,
)
1
1
1
1
1
v
1 + j = 1 k j ,
a 1 (
a 1 (
i )
a 1 (
2
,
1
)
2
,
2
,
1
)
i =
k i 1
·
2
,
3
,
4 (3.13)
a 1 (
a 1 (
i )
a 1 ( 4 , i )
a 1 (
)
a 1 ( 4 , 1 )
3
,
1
3
,
)
a 1 ( 4 , 1 )
3
,
1
For User 2, at time slot 1, we let
Search WWH ::




Custom Search