Information Technology Reference
In-Depth Information
Proof. The proof is very similar to the one for Theorem 1 with some modifica-
tions. For the sake of space, the detailed proof is omitted here.
In what follows, we will show that the design method of the robust non-fragile
controller based on the LMI framework [28].
Firstly, we give the sucient condition for the existence of non-fragile state
feedback controller with additive control gain perturbations of form (4).
Theorem 3. Consider system (1), for given scalar ε 1 i > 0 2 i > 0 3 i >
0 4 i > 0 0 > 0 ,
M ,ifthereexist X i > 0 ,W i , and the state feedback
gain matrix K i = W i X 1
i
(if it exists), such that the LMIs condition
i
Γ i X i L i X i N i W i M i
0 E i X i N i
∗−
ε 1 i I 0
0
0 0
0
∗∗−
ε 2 i I
0
0
0
0
∗∗ ∗−
ε 3 i I
0
0
0
< 0
(23)
∗∗ ∗ ∗−
Ξ ( ε 4 i )0 0
∗∗ ∗ ∗ ∗−
ε 4 i I 0
∗∗ ∗ ∗ ∗ ∗−
ε 4 i I
holds, then the closed-loop system (21) with additive control gain perturbations
(4) is exponentially stable with stability margin λ under arbitrary switching signal
in terms of average dwell-time satisfying τ D
τ D .In(23), Γ i = He
{
A i X i +
+ ε 1 i D i D i + ε 2 i B i F i F i B i + ε 3 i E i E i +2 λ 0 X i , Ξ ( ε 4 i )= I
B i W i }
ε 4 i ( I +
M i F i F i M i ) .
Proof. Using Lemma 2, we can get
ε 1 i P i D i D i P i + ε 1
1 i L i L i ,
He
{
P i ΔA i }≤
ε 2 i P i B i F i F i B i P i + ε 1
2 i N i N i ,
He
{
P i B i ΔK i }≤
ε 3 i P i E i E i P i + ε 1
3 i K i M i M i K i .
He
{
P i ΔB i K i }≤
Due to He
{
P i ΔB i ΔK i }
= He
{
P i E i Δ B i ( t ) M i F i Δ K i ( t ) N i }
, one has
( P i E i Δ B i ( t )+ N i Δ K i ( t ) F i M i )
He
{
P i ΔB i ΔK i }≤
×
( P i E i Δ B i ( t )+ N i Δ K i ( t ) F i M i ) T .
Substituting the above inequalities into (22), it yields
A i P i + P i A i + K i B i P i + P i B i K i +2 λ 0 P i + ε 1 i P i D i D i P i + ε 1
1 i L i L i +
3 i K i M i M i K i +
( P i E i Δ B i ( t )+ N i Δ K i ( t ) F i M i )( P i E i Δ B i ( t )+ N i Δ K i ( t ) F i M i ) T < 0 .
(24)
ε 2 i P i B i F i F i B i P i + ε 1
2 i N i N i + ε 3 i P i E i E i P i + ε 1
Let us introduce the matrix X i = P i and consider the change of variable
W i = K i X i . Then, pre- and post-multiplying (24) by P i , and using Lemma 1,
 
Search WWH ::




Custom Search