Information Technology Reference
In-Depth Information
u ( t
1) ,u ( t
2) ,u ( t
3) ,
···
,u ( t
n ) ,
y ( t
1) ,
y ( t
2) ,
···
,
3 n ,
y ( t
n )] T
R
(6)
Using the following SG algorithm to estimate the parameter vector
θ
in (5):
1) + ϕ
( t )
r ( t ) ( y ( t )
ˆ
( t )= ˆ
T ( t ) ˆ
θ
θ
( t
ϕ
θ
( t
1)) ,
(7)
ϕ
( t )=[ u ( t
2) ,
u ( t− 3) h ( t− 3) ,···,u ( t−n ) h ( t−n )
,u ( t− 1) ,u ( t− 2) ,u ( t− 3) ,···,u ( t−n ) ,
1) h ( t
1) ,u ( t
2) h ( t
y ( t
1) ,
y ( t
2) ,
···
,
y ( t
n )] T ,
(8)
2 ,r (0) = 1 .
r ( t )= r ( t
1) +
ϕ
( t )
(9)
1
2 :=
where
r ( t ) is the step-size and the norm of matrix X is defined by
X
tr[ XX T ].
The convergence of the SG algorithm is relatively slower compared with the
recursive least squares algorithm. In order to improve the tracking performance
of the SG algorithm, we can introduce a λ in the SG algorithm to get the SG
algorithm with a forgetting factor (the FF-SG algorithm for short) as follows:
1) + ϕ
( t )
r ( t ) ( y ( t )
ˆ
( t )= ˆ
T ( t ) ˆ
θ
θ
( t
ϕ
θ
( t
1)) ,
(10)
ϕ
( t )=[ u ( t
1) h ( t
1) ,u ( t
2) h ( t
2) ,
u ( t
3) h ( t
3) ,
···
,u ( t
n ) h ( t
n ) ,
u ( t
1) ,u ( t
2) ,u ( t
3) ,
···
,u ( t
n ) ,
y ( t
1) ,
y ( t
2) ,
···
,
y ( t
n )] T
(11)
2 ,
0 <λ< 1 ,r (0) = 1 .
r ( t )= λr ( t
1) +
ϕ
( t )
(12)
4 Example
Consider the following linear dynamic block,
0 . 1 q 1 ] y ( t )=[ q 1 +1 . 2 q 2 ] f ( u ( t )) + v ( t ) ,
[1
the input
is taken as a persistent excitation signal sequence with zero
mean and unit variance, and
{
u ( t )
}
is taken as a white noise sequence with zero
mean and variance σ 2 =0 . 10 2 , the piece-wise linearity is shown in Figure 1 and
with parameters: m 1 =1, m 2 =0 . 8. Then we have
{
v ( t )
}
θ
=[ m 1
m 2 ) , 0 . 5( m 1 + m 2 ) ,
0 . 5 b 2 ( m 1 + m 2 ) ,a 1 ] T
m 2 ,b 2 ( m 1
 
Search WWH ::




Custom Search