Chemistry Reference
In-Depth Information
Munné-Bosch, S., & Penuelas, J. (2003). Photo- and antioxidative protection, and a role for
salicylic acid during drought and recovery in field-grown Phillyrea angustifolia plants.
Planta, 217, 758-766.
Narusaka, Y., Narusaka, M., Seki, M., Fujita, M., Ishida, J., Nakashima, M., et al. (2003).
Expression profiles of Arabidopsis phospholipase A IIA gene in response to biotic and abiotic
stresses. Plant and Cell Physiology, 44, 1246-1252.
Narusaka, Y., Narusaka, M., Seki, M., Umezawa, T., Ishida, J., Nakajima, M., et al. (2004).
Crosstalk in the responses to abiotic and biotic stresses in Arabidopsis: Analysis of gene
expression in cytochrome P450 gene superfamily by cDNA microarray. Plant Molecular
Biology, 55, 327-342.
Németh, M., Janda, T., Horváth, E., Páldi, E., & Szalai, G. (2002). Exogenous salicylic acid
increases polyamine content but may decrease drought tolerance in maize. Plant Science, 162,
569-574.
Nguyen, H. T., Leipner, J., Stamp, P., & Guerra-Peraza, O. (2009). Low temperature stress in
maize (Zea mays L.) induces genes involved in photosynthesis and signal transduction as
studied by suppression subtractive hybridization. Plant Physiology and Biochemistry, 47,
116-122.
Nieto-Sotelo, J., Kannan, K. B., Martinez, L. M., & Segal, C. (1999). Characterization of a maize
heat-shock protein 101 gene, HSP101, encoding a ClpB/Hsp100 protein homologue. Gene,
230, 187-195.
Niki, T., Mitsuhara, I., Seo, S., Ohtsubo, N., & Ohashi, Y. (1998). Antagonistic effect of salicylic
acid and jasmonic acid on the expression of pathogenesis-related (PR) protein genes in
wounded mature tobacco leaves. Plant and Cell Physiology, 39, 500-507.
Norman, C., Howell, K. A., Millar, A. H., Whelan, J. M., & Day, D. A. (2004). Salicylic acid is
an uncoupler and inhibitor of mitochondrial electron transport. Plant Physiology, 134,
492-501.
Ogawa, D., Nakajima, N., Sano, T., Tamaoki, M., Aono, M., Kubo, A., et al. (2005). Salicylic
acid accumulation under O 3 exposure is regulated by ethylene in tobacco plants. Plant and
Cell Physiology, 46, 1062-1072.
Ogawa, D., Nakajima, N., Tamaoki, M., Aono, M., Kubo, A., Kamada, H., et al. (2007). The
isochorismate pathway is negatively regulated by salicylic acid signaling in O 3 -exposed
Arabidopsis. Planta, 226, 1277-1285.
Ohtake, Y., Takahashi, T., & Komed, Y. (2000). Salicylic acid induces the expression of a
number of receptor-like kinase genes in Arabidopsis thaliana. Plant and Cell Physiology, 41,
1038-1044.
Opdenakker, K., Remans, T., Vangronsveld, J., & Cuypers, A. (2012). Mitogen-activated protein
(MAP) kinases in plant metal stress: Regulation and responses in comparison to other biotic
and abiotic stresses. International Journal of Molecular Sciences, 13, 7828-7853.
Pál, M., Horváth, E., Janda, T., Páldi, E., & Szalai, G. (2005). Cadmium stimulate accumulation
of salicylic acid and its putative precursors in maize (Zea mays L.) plants. Physiologia
Plantarum, 125, 356-364.
Pál, M., Janda, T., & Szalai, G. (2011). Abscisic acid may alter the salicylic acid. Related abiotic
stress response in Maize. Journal of Agronomy and Crop Science, 197, 368-377.
Pál, M., Szalai, G., Horváth, E., Janda, T., & Páldi, E. (2002). Effect of salicylic acid during
heavy metal stress. Acta Biologica Szegediensis, 46, 119-120.
Pandey, S. P., & Somssich, I. E. (2009). The role of WRKY transcription factors in plant
immunity. Plant Physiology, 150, 1648-1655.
Pareek, A., Singla, S. L., & Grover, A. (1998). Proteins alterations associated with salinity,
desiccation, high and low temperature stresses and abscisic acid application in seedlings of
Pusa 169, a high-yielding rice (Oryza sativa L.) cultivar. Current Science, 75, 1023-1035.
Pell, E. J., Schlagnhaufer, C. D., & Arteca, R. N. (1997). Ozone-induced oxidative stress:
Mechanisms of action and reaction. Physiologia Plantarum, 100, 264-273.
Search WWH ::




Custom Search