Chemistry Reference
In-Depth Information
Chini, A., Grant, J. J., Seki, M., Shinozaki, K., & Loake, G. J. (2004). Drought tolerance
established by enhanced expression of the CC-NBS-LRR gene, ADR1, requires salicylic acid,
EDS1 and ABI1. The Plant Journal, 38, 810-822.
Cho, K., Agrawal, G. K., Jwa, N. S., Kubo, A., & Rakwal, R. (2009). Rice OsSIPK and its
orthologs: A ''central master switch'' for stress responses. Biochemical and Biophysical
Research Communications, 379, 649-653.
Chung, E., Park, J. M., Oh, S. K., Joung, Y. H., Lee, S., & Choi, D. (2004). Molecular and
biochemical characterization of the Capsicum annuum calcium-dependent protein kinase 3
(CaCDPK3) gene induced by abiotic and biotic stresses. Planta, 220, 286-295.
Clarke, S. M., Mur, L. A. J., Wood, J. E., & Scott, I. M. (2004). Salicylic acid dependent
signaling promotes basal thermo tolerance but is not essential for acquired thermo tolerance in
Arabidopsis thaliana. The Plant Journal, 38, 432-447.
Cleland, C. F. (1974). Isolation of flower-inducing and flower-inhibitory factors from aphid
honeydew. Plant Physiology, 54, 899-903.
Cleland, C. F., & Ajami, A. (1974). Identification of the flower-inducing factor isolated from
aphid honeydew as being salicylic acid. Plant Physiology, 54, 904-906.
Colcombet, J., & Hirt, H. (2008). Arabidopsis MAPKs: A complex signalling network involved
in multiple biological processes. The Biochemical Journal, 413, 217-226.
Conrath, U., Chen, Z., Ricigliano, J. R., & Klessig, D. F. (1995). Two inducers of plant defense
responses, 2,6-dichloroisonicotinic acid and salicylic acid, inhibit catalase activity in tobacco.
Proceedings of the National academy of Sciences of the United States of America, 92,
7143-7147.
Cronje, M. J., & Bornman, L. (1999). Salicylic acid influences Hsp70/Hsc70 expression in
Lycopersicon esculentum: Dose- and time-dependent induction or potentiation. Biochemical
and Biophysical Research Communications, 265, 422-427.
Dat, J. F., Foyer, C. H., & Scott, I. M. (1998a). Changes in salicylic acid and antioxidants during
induced thermotolerance in mustard seedlings. Plant Physiology, 118, 1455-1461.
Dat, J. F., Lopez-Delgado, H., Foyer, C. H., & Scott, I. M. (1998b). Parallel changes in H 2 O 2 and
catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard
seedlings. Plant Physiology, 116, 1351-1357.
Dat, J. F., Lopez-Delgado, H., Foyer, C. H., & Scott, I. M. (2000). Effects of salicylic acid on
oxidative stress and thermotolerance in tobacco. Journal of Plant Physiology, 156, 659-665.
De Diego, N., Pérez-Alfocea, F., Cantero, E., Lacuesta, M., & Moncaleán, P. (2012).
Physiological response to drought in radiata pine: Phytohormone implication at leaf level.
Tree Physiology, 32, 435-449.
de Torres Zabala, M., Bennett, M. H., Truman, W. H., & Grant, M. R. (2009). Antagonism
between salicylic and abscisic acid reflects early host-pathogen conflict and moulds plant
defence responses. The Plant Journal, 59, 375-386.
de Torres-Zabala, M., Truman, W., Bennett, M. H., Lafforgue, G., Mansfield, J. W., Egea, P. R.,
et al. (2007). Pseudomonas syringae pv. tomato hijacks the Arabidopsis abscisic acid
signalling pathway to cause disease. EMBO Journal, 26, 1434-1443.
Dean, J. V., & Mills, J. D. (2004). Uptake of salicylic acid 2-O-b- D -glucose into soybean
tonoplast vesicles by an ATP-binding cassette transporter-type mechanism. Physiologia
Plantarum, 120, 603-612.
Dean, J. V., Shah, R. P., & Mohammed, L. A. (2003). Formation and vacuolar localization of
salicylic acid glucose conjugates in soybean cell suspension cultures. Physiologia Plantarum,
118, 328-336.
DeKock, P. C., Grabowsky, F. B., & Innes, A. M. (1974). The effect of salicylic acid on the
growth of Lemna gibba. Annals of Botany, 38, 903-908.
Dempsey, D. M. A., Vlot, A. C., Wildermuth, M. C., & Klessig, D. F. (2011). Salicylic acid
biosynthesis
and
metabolism.
The
Arabidopsis
topic.
The
American
Society
of
Plant
Biologists, 9, e0156.
Després, C., Chubak, C., Rochon, A., Clark, R., Bethune, T., Desveaux, D., et al. (2003). The
Arabidopsis NPR1 disease resistance protein is a novel cofactor that confers redox regulation
Search WWH ::




Custom Search