Chemistry Reference
In-Depth Information
Suge, H. (1972). Inhibition of photoperiodic floral induction in Pharbitis nil by ethylene. Plant
and Cell Physiology, 13, 1031-1038.
Summermatter, K., Sticher, L., & Métraux, J. P. (1995). Systemic responses in Arabidopsis
thaliana infected and challenged with Pseudomonas syringae pv syringae. Plant Physiology,
108, 1379-1385.
Swe, K. L., Shinozaki, M., & Takimoto, A. (1985). Varietal differences in flowering behavior of
Pharbitis nil Chois. Memoirs of the College of Agriculture Kyoto University, 126, 1-20.
Takeno, K. (1996). Influences of plant hormones on photoperiodic flowering in Pharbitis nil: Re-
evaluation by the perfusion technique. Plant Growth Regulation, 20, 189-194.
Takeno, K. (2012). Stress-induced flowering. In P. Ahmad & M. N. V. Prasad (Eds.), Abiotic
stress responses in plants: Metabolism, productivity and sustainability (pp. 331-345). New
York: Springer.
Takeno, K., & Maeda, T. (1996). Abscisic acid both promotes and inhibits photoperiodic
flowering of Pharbitis nil. Physiologia Plantarum, 98, 467-470.
Tamaki, S., Matsuo, S., Wong, H. L., Yokoi, S., & Shimamoto, K. (2007). Hd3a protein is a
mobile flowering signal in rice. Science, 316, 1033-1036.
Thomas, B., & Vince-Prue, D. (1997). Photoperiodism in Plants (2nd ed.). San Diego: Academic
Press.
Wada, K. C. (2007). Stress-induced flowering. Dissertation of Master Degree. Niigata University
(in Japanese).
Wada, K. C. (2012). Regulatory mechanism of stress-induced flowering. Dissertation of PhD
Degree. Niigata University.
Wada, K. C., Kondo, H., & Takeno, K. (2010a). Obligatory short-day plant, Perilla frutescens
var. crispa can flower in response to low-intensity light stress under long-day conditions.
Physiologia Plantarum, 138, 339-345.
Wada, K. C., & Takeno, K. (2010). Stress-induced flowering. Plant Signaling and Behavior, 5,
944-947.
Wada, K. C., Yamada, M., Shiraya, T., & Takeno, K. (2010b). Salicylic acid and the flowering
gene
FLOWERING
LOCUS
T
homolog
are
involved
in
poor-nutrition
stress-induced
flowering of Pharbitis nil. Journal of Plant Physiology, 167, 447-452.
Wada, N., Shinozaki, M., & Iwamura, H. (1994). Flower induction by polyamines and related
compounds in seedlings of morning glory (Pharbitis nil cv. Kidachi). Plant and Cell
Physiology, 35, 469-472.
Wen, P. F., Chen, J. Y., Kong, W. F., Pan, Q. H., Wan, S. B., & Huang, W. D. (2005). Salicylic
acid induced the expression of phenylalanine ammonia-lyase gene in grape berry. Plant
Science, 169, 928-934.
Xiong, L., Schumaker, K. S., & Zhu, J. K. (2002). Cell signaling during cold, drought, and salt
stress. The Plant Cell, 14 (suppl.), S165-183.
Yaish, M. W., Colasanti, J., & Rothstein, S. J. (2011). The role of epigenetic processes in
controlling flowering time in plants exposed to stress. Journal of Experimental Botany, 62,
3727-3735.
Yalpani, N., Leo ´, J., Lawton, M. A., & Raskin, I. (1993). Pathway of salicylic acid biosynthesis
in healthy and virus-inoculated tobacco. Plant Physiology, 103, 315-321.
Yamada, M. (2011). The gene regulation of stress-induced flowering in Pharbitis nil. Dissertation
of Master Degree. Niigata University (in Japanese).
Yamaguchi, S., Yokoyama, M., Iida, T., Okai, M., Tanaka, O., & Takimoto, A. (2001).
Identification of a component that induces flowering of Lemna among the reaction products of
a-ketol linolenic acid (FIF) and norepinephrine. Plant and Cell Physiology, 42, 1201-1209.
Yokoyama, M., Yamaguchi, S., Inomata, S., Komatsu, K., Yoshida, S., Iida, T., et al. (2000).
Stress-induced factor involved in flower formation of Lemna is an a-ketol derivative of
linolenic acid. Plant and Cell Physiology, 41, 110-113.
Yu, D., Liu, Y., Fan, B., Klessig, D. F., & Chen, Z. (1997). Is the high basal level of salicylic acid
important for disease resistance in potato? Plant Physiology, 115, 343-349.
Search WWH ::




Custom Search