Chemistry Reference
In-Depth Information
Krajn ˇ i ˇ , B. (1985). Regulation of floral induction with ABA and EDDHA. Biološki Vestnik 33,
39-52.
Krajn ˇ i ˇ , B., Kristl, J., & Jan ˇ ekovi ˇ , I. (2006). Possible role of jasmonic acid in the regulation of
floral induction, evocation and floral differentiation in Lemna minor L. Plant Physiology and
Biochemistry, 44, 752-758.
Krajnˇiˇ, B., & Nemec, J. (1995). The effect of jasmonic acid on flowering in Spirodela
polyrrhiza (L.) Schleiden. Journal of Plant Physiology, 146, 754-756.
Larkindale, J., Hall, J. D., Knight, M. R., & Vierling, E. (2005). Heat stress phenotypes of
Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotol-
erance. Plant Physiology, 138, 882-897.
Lee, S., Kim, S. G., & Park, C. M. (2010). Salicylic acid promotes seed germination under high
salinity by modulating antioxidant activity in Arabidopsis. New Phytologist, 188, 626-637.
León, J., Lawton, M. A., & Raskin, I. (1995). Hydrogen peroxide stimulates salicylic acid
biosynthesis in tobacco. Plant Physiology, 108, 1673-1678.
Lin, M. K., Belanger, H., Lee, Y. J., Varkonyi-Gasic, E., Taoka, K., Miura, E., et al. (2007).
FLOWERING LOCUS T protein may act as the long-distance florigenic signal in the
cucurbits. The Plant Cell, 19, 1488-1506.
Liu, Y., & Zhang, S. (2004). Phosphorylation of 1-aminocyclopropane-1-carboxylic acid
synthase by MPK6, a stress-responsive mitogen-activated protein kinase, induces ethylene
biosynthesis in Arabidopsis. The Plant Cell, 16, 3386-3399.
Marín, I. C., Loef, I., Bartetzko, L., Searle, I., Coupland, G., Stitt, M., et al. (2011). Nitrate
regulates floral induction in Arabidopsis, acting independently of light, gibberellin and
autonomous pathways. Planta, 233, 539-552.
Martínez, C., Pons, E., Prats, G., & León, J. (2004). Salicylic acid regulates flowering time and
links defense responses and reproductive development. The Plant Journal, 37, 209-217.
Mateo, A., Funck, D., Mühlenbock, P., Kular, B., Mullineaux, P. M., & Karpinski, S. (2006).
Controlled
levels
of
salicylic
acid
are
required
for
optimal
photosynthesis
and
redox
homeostasis. Journal of Experimental Botany, 57, 1795-1807.
Mauch-Mani, B., & Slusarenko, A. J. (1996). Production of salicylic acid precursors is a major
function of phenylalanine ammonia-lyase in the resistance of Arabidopsis to Peronospora
parasitica. The Plant Cell, 8, 203-212.
Mavandad, M., Edwards, R., Liang, X., Lamb, C. J., & Dixon, R. A. (1990). Effects of trans-
cinnamic acid on expression of the bean phenylalanine ammonia-lyase gene family. Plant
Physiology, 94, 671-680.
McDaniel, C. N. (1996). Developmental physiology of floral initiation in Nicotiana tabacum L.
Journal of Experimental Botany, 47, 465-475.
Michaels, S. D., & Amasino, R. M. (2000). Memories of winter:
Vernalization and the
competence to flower. Plant, Cell and Environment, 23, 1145-1153.
Michaels, S. D., & Amasino, R. M. (2001). Loss of FLOWERING LOCUS C activity eliminates
the late-flowering phenotype of FRIGIDA and autonomous pathway mutations but not
responsiveness to vernalization. The Plant Cell, 13, 935-941.
Moreau, M., Lindermar, C., Durner, J., & Klessig, D. F. (2010). NO synthesis and signaling in
plants—where do we stand? Physiologia Plantarum, 138, 372-383.
Nakanishi, F., Kusumi, T., Inoue, Y., & Fujii, T. (1995). Dihydrokaempferol glucoside from
cotyledons promotes flowering in Pharbitis nil. Plant and Cell Physiology, 36, 1303-1309.
Neuenschwander, U., Vernooij, B., Friedrich, L., Uknes, S., Kessmann, H., & Ryals, J. (1995). Is
hydrogen peroxide a second messenger of salicylic acid in systemic acquired resistance? The
Plant Journal, 8, 227-233.
Ni, W., Fahrendorf, T., Balance, G. M., Lamb, C. J., & Dixon, R. A. (1996). Stress responses in
alfalfa (Medicago sativa L.). XX. Transcriptional activation of phenylpropanoid pathway
genes in elicitor-induced cell suspension cultures. Plant Molecular Biology, 30, 427-438.
Okuda, T., Matsuda, Y., Yamanaka, A., & Sagisaka, S. (1991). Abrupt increase in the level of
hydrogen peroxide in leaves of winter wheat is caused by cold treatment. Plant Physiology,
97, 1265-1267.
Search WWH ::




Custom Search