Chemistry Reference
In-Depth Information
Fusco, N., Micheletto, L., Dal Corso, G., Borgato, L., & Furini, A. (2005). Identification of
cadmium-regulated genes by cDNA-AFLP in the heavy metal accumulator Brassica juncea L.
Journal of Experimental Botany, 56, 3017-3027.
Gemes, K., Poor, P., Horvath, E., Kolbert, Z., Szopko, D., Szepesi, A., et al. (2011). Cross-talk
between salicylic acid and NaCl-generated reactive oxygen species and nitric oxide in tomato
during acclimation to high salinity. Physiologia Plantarum, 142, 179-192.
Hara, M. (2010). The multifunctionality of dehydrins. Plant Signaling & Behavior, 5, 503-508.
Hayat, S., Ali, B., & Ahmad, A. (2007). Salicylic acid: biosynthesis, metabolism and
physiological role in plants. In S. Hayat & A. Ahmad (Eds.), Salicylic acid—a plant
hormone. The Netherlands: Springer.
Hayat, Q., Hayat, S., Irfan, M., & Ahmad, A. (2010). Effect of exogenous salicylic acid under
changing environment: a review. Environmental and Experimental Botany, 68, 14-25.
Hiraga, S., Sasaki, K., Ito, H., Ohashi, Y., & Matsui, H. (2001). A large family of class III plant
peroxidases. Plant and Cell Physiology, 42, 462-468.
Hsu, Y. T., & Kao, C. H. (2005). Abscisic acid accumulation and cadmium tolerance in rice
seedlings. Physiologia Plantarum, 124, 71-80.
Hsu, Y. T., & Kao, C. H. (2007). Toxicity in leaves of rice exposed to cadmium is due to
hydrogen peroxide accumulation. Plant and Soil, 298, 231-241.
Ivanova, A., Krantev, A., Stoynova, Zh., & Popova, L. (2008). Cadmium-induced changes in
maize leaves and the protective role of salicylic acid. General and Applied Plant Physiology,
34, 149-158.
Janda, T., Horváth, E., Szalai, G., & Páldi, E. (2007). Role of salicylic acid in the induction of
abiotic stress tolerance. In S. Hayat & A. Ahmad (Eds.), Salicylic acid—a plant hormone. The
Netherlands: Springer.
Jaspers, P., & Kangasjarvi, J. (2010). Reactive oxygen species in abiotic stress signaling.
Physiologia Plantarum, 138, 405-413.
Jiang, M., & Zhang, J. (2002). Water stress-induced abscisic acid accumulation triggers the
increased generation of reactive oxygen species and up-regulates the activities of antioxidant
enzymes in maize leaves. Journal of Experimental Botany, 53, 2401-2410.
Kim, T.-H., Bohmer, M., Hu, H., Nishimura, N., & Schroeder, J. I. (2010). Guard cell signal
transduction network: advances in understanding abscisic acid, CO 2 , and Ca 2+
signaling.
Annual Review of Plant Biology, 61, 561-591.
Ková ˇ ik, J., & Klejdus, B. (2008). Dynamics of phenolic acids and lignin accumulation in metal-
treated Matricaria chamomilla roots. Plant Cell Reports, 27, 605-615.
Krantev, A., Yordanova, R., Janda, T., Szalai, G., & Popova, L. (2008). Treatment with salicylic
acid decreases the effect of cadmium on photosynthesis in maize plants. Journal of Plant
Physiology, 165, 920-931.
Liu, H.-T., Liu, Y.-Y., Pan, Q.-H., Yang, H.-R., Zhan, J.-C., & Huang, W.-D. (2006). Novel
interrelationship between salicylic acid, abscisic acid, and PIP-specific phospholipase C in
heat acclimation-induced thermotolerance in pea leaves. Journal of Experimental Botany, 57,
3337-3347.
Meng, H., Hua, S., Shamsi, I. H., Jilani, G., Li, Y., & Jiang, L. (2009). Cadmium-induced stress
on the seed germination and seedling growth of Brassica napus L., and its alleviation through
exogenous plant growth regulators. Plant Growth Regulation, 58, 47-59.
Metraux, J. P. (2002). Recent breakthroughs in study of salicylic acid biosynthesis. Trends in
Plant Science, 7, 331-334.
Metwally, A., Finkemeier, I., Georgi, M., & Dietz, K.-J. (2003). Salicylic acid alleviates the
cadmium toxicity in barley seedlings. Plant Physiology, 132, 272-281.
Moura, J. C. M. S., Bonine, C. A. V., Viana, J. O. F., Dornelas, M. C., & Mazzafera, P. (2010).
Abiotic and biotic stresses and changes in the lignin content and composition in plants.
Journal of Integrative Plant Biology, 52, 360-376.
Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant
Biology, 59, 651-681.
Search WWH ::




Custom Search