Biomedical Engineering Reference
In-Depth Information
141. Doss, S. K. (1976) Surface properties of hydroxyapatite: I. The effect of
various inorganic ions on the electrophoretic behavior,
J. Dent. Res.
,
55
,
1067-1075.
142. Nielsen, A. E. (1980) Transport control in crystal growth from solution,
Croat. Chem. Acta
, 255-279.
143. Okazaki, M., Sato, M., Takahashi, J. (1995) Space-cutting model of
hydroxyapatite,
,
53
, 45-49.
144. Iijima, M., Nelson, D. G. A., Pan, Y., Kreinbrink, A. T., Adachi, M., Goto,
T., and Moriwaki, Y. (1996) Fluoride analysis of apatite crystals with a
central planar OCP inclusion: Concerning the role of F − ions on apatite/
OCP/apatite structure formation,
Biomaterials
,
16
, 377-384.
145. Aoba, T. (1997) The effect of fluoride on apatite structure and growth,
Crit. Rev. Oral Biol. Med.
Calcif. Tiss. Int.
,
59
, 136-153.
146. de Leeuw, N. H. (2004) Resisting the onset of hydroxyapatite
dissolution through the incorporation of fluoride,
,
8
J. Phys. Chem. B
,
108
,
1809-1811.
147. Liu, Y., Sethuraman, G., Wu, W., Nancollas, G. H., and Grynpas, M. (1997)
The crystallization of fluorapatite in the presence of hydroxyapatite
seeds and of hydroxyapatite in the presence of fluorapatite seeds,
J.
, 102-109.
148. Dickens, B., and Schroeder, L. W. (1980) Investigation of
epitaxy
Coll. Interf. Sci.
,
186
relationships
between
Ca
(PO
)
OH and other calcium
5
4
3
, 347-362.
149. Stranski, I. N. (1928) Zur Theorie des Kristallwachstums,
orthophosphates,
J. Res. Natl. Bur. Stand.
,
85
Z. Phys. Chem.
,
, 259-278.
150. Nangia, S., Garrison, B. J. (2009)
136
study of dissolution and
precipitation reactions from the edge, kink, and terrace sites of quartz
as a function of pH,
Ab initio
, 831-843.
151. Kossel, W. (1934) Zur Energetik von Oberflächenvorgangen,
Molecular Phys.
,
107
Annalen
der Physik
,
21
, 457-480.
Search WWH ::




Custom Search