Environmental Engineering Reference
In-Depth Information
Gascó, G., Blanco, C. G., Guerrero, F. & Méndez Lázaro, A. M. (2005). The influence of
organic matter on sewage sludge pyrolysis. Journal of Analytical and Applied Pyrolysis.
74, 413-420.
Gavala, H. N., Yenal, U., Skiadas, V., Westermann, P. & Ahring, B. K. (2003). Mesophilic
and thermophilic anaerobic digestion of primary and secondary sludge. Effect of pre-
treatment at elevated temperature. Water Research, 37, 4561-4572.
General Atomics, (1997). Sewage sludge gasification in supercritical water. Final report, US
DOE Cooperative Agreement, No. DE-FC36-97GO10216.
Griffith, J. W. & Raymond, D. H. (2002). The first commercial supercritical water oxidation
sludge processing plant. Waste Management, 22, 453-459.
Hamilton, C. J. (1998). Gasification as an innovative means of sewage sludge disposal.
In Treatment lnnovation for the Next Century: lnnovation 2000, Cambridge,
July 1998.
Hao, X., Guo, L., Zhang, X. & Guan, Y. (2005). Hydrogen production from catalytic
gasification of cellulose in supercritical water. Chemical Engineering Journal, 110, 57-65.
Holgate, H. R., Meyer, J. C. & Tester, J. W. (1995). Glucose hydrolysis and oxidation in
supercritical water. AIChE J. 41, 637-647.
Jakab, E., Liu, K. & Meuzelaar, H. L. C. (1997). Thermal decomposition of wood and
cellulose in the presence of solvent vapours. Ind. Eng. Chem. Res., 36, 2087.
Joyce, T. W., Webb, A. A. & Dugal, H. S. (1979). Quality and composition of pulp and paper
mill primary sludge. Resource Recovery Conserv., 4, 99-103.
IEA Bioenergy Executive Committee. (2007). Potential Contribution of Bioenergy to the
World's Future Energy Demand, IEA Bioenergy, Paris, France
Izumizaki, Ya., Chul Park, K., Tachibana, Y., Tomiyasu, H. & Fujii, Y. (2005). Organic
Decomposition in Supercritical Water by an aid of Ruthenium (IV) Oxide as a Catalyst -
Exploitation of Biomass Resources for Hydrogen Production. Progress in Nuclear
Energy, 47, 544-552.
Karayildirim, T., Yanik, J., Yuksel, M. & Bockhorn, H. (2006). Characterisation of products
from pyrolysis of waste sludges. Fuel, 85, 1498-1508.
Khalili, N. R., Campbell, M., Sandi, G. & Golaś, J. (2000). Production of micro- and
mesoporous activated carbon from paper mill sludge I. Effect of zince chloride activation.
Carbon, 38, 1905-1915.
Kim, Y. & Parker, W. (2008). A technical and economic evaluation of the pyrolysis of
sewage sludge for the production of bio-oil. Bioresource Technology, 99, 1409-1416.
Kimura, T., Miyazawa, T., Nishikawa, J., Kato, S., Okumura, K., Miyao, T., Naito, S.,
Kunimori, K. & Tomishige, K. (2006). Development of Ni catalysts for tar removal by
stream gasification of biomass. Applied Catalysis B: Environmental, 68,
160-170.
Kistler, R. C. & Widmer, F. (1987). Behaviour of chromium, nickel, copper, zinc, cadmium,
mercury and lead during the pyrolysis of sewage sludge. Envis Sci. & Technol., 21, 704.
Kranich, W. L. (1984). Conversion of sewage sludge to oil by hydroliquefaction. EPA-600/2-
84-010. Report for the U.S. EPA, Cincinnati, OH.
Kumar, S. (2000). Technology options for municipal solid waste-to-energy project. TERI
Information Monitor on Environmental Science, 5, 1-11.
Lange, J. P. (2007). Lignocellulose conversion: an introduction to chemistry, process and
economics. Biofuels, Bioproducts & Biorefining, 1, 39-48.
Search WWH ::




Custom Search