Biology Reference
In-Depth Information
in the marine bacterium Rhodopirellula baltica .
Proteomics 5:3672-3683
42. Gade D, Stührmann T, Reinhardt R et al
(2005) Proteomic analysis of growth stages
and morphotypes in the marine bacterium
Rhodopirellula baltica . Environ Microbiol 7:
1074-1084
43. Buchan A, González JM, Moran MA (2005)
Overview of the marine roseobacter lineage.
Appl Environ Microbiol 71:5665-5677
44. Wagner-Döbler I, Biebl H (2006) Environmental
biology of the marine Roseobacter lineage.
Annu Rev Microbiol 60:255-280
45. Brinkhoff T, Giebel HA, Simon M (2008)
Diversity, ecology, and genomics of the
Roseobacter clade: a short overview. Arch
Microbiol 189:531-539
46. Newton RJ, Griffi n LE, Bowles KM et al (2010)
Genome characteristics of a generalist marine
bacterial lineage. ISME J 4:784-798
47. Martens T, Heidorn T, Pukall R et al (2006)
Reclassifi cation of Roseobacter gallaeciensis
Ruiz-Ponte et al. 1998 as Phaeobacter gal-
laeciensis gen. nov., comb. nov., description of
Phaeobacter inhibens sp. nov., reclassifi cation of
Ruegeria algicola (Lafay et al. 1995) Uchino
et al. 1999 as Marinovum algicola gen. nov.,
comb. nov., and emended descriptions of the
genera Roseobacter , Ruegeria and Leisingera .
Int J Syst Evol Microbiol 56:1293-304
48. Zech H, Thole S, Schreiber K et al (2009)
Growth phase-dependent global protein and
metabolite profi les of Phaeobacter gallaeciensis
strain DSM 17395, a member of the marine
Roseobacter -clade. Proteomics 9:3677-3697
49. Fürch T, Preusse M, Tomasch J et al (2009)
Metabolic fl uxes in the central carbon metabo-
lism of Dinoroseobacter shibae and Phaeobacter
gallaeciensis , two members of the marine
Roseobacter clade. BMC Microbiol 9:209
50. Rabus R, Widdel F (1995) Anaerobic degra-
dation of ethylbenzene and other aromatic
hydrocarbons by new denitrifying bacteria.
Arch Microbiol 163:96-103
51. Rabus R, Wilkes H, Schramm A et al (1999)
Anaerobic utilization of alkylbenzenes and
n -alkanes from crude oil in an enrichment cul-
ture of denitrifying bacteria affi liating with
the β-subclass of Proteobacteria . Environ
Microbiol 1:145-157
52. Champion KM, Zengler K, Rabus R (1999)
Anaerobic degradation of ethylbenzene and
toluene in denitrifying strain EbN1 proceeds
via independent substrate-induced pathways.
J Mol Microbiol Biotechnol 1:157-164
53. Rabus R, Kube M, Beck A et al (2002) Genes
involved in the anaerobic degradation of ethyl-
benzene in a denitrifying bacterium, strain EbN1.
Arch Microbiol 178:506-516
54. Kube M, Heider J, Hufnagel P et al (2004)
Genes involved in the anaerobic degradation of
toluene in a denitrifying bacterium, strain EbN1.
Arch Microbiol 181:182-184
55. Kühner S, Wöhlbrand L, Hufnagel P et al
(2005) Substrate-dependent regulation of anaer-
obic ethylbenzene and toluene metabolism in a
denitrifying bacterium, strain EbN1. J Bacteriol
187:1493-1503
56. Wöhlbrand L, Wilkes H, Halder T et al (2008)
Anaerobic degradation of p -ethylphenol by
Aromatoleum aromaticum ” strain EbN1: path-
way, involved proteins and regulation. J Bacteriol
190:5699-5709
57. Wöhlbrand L, Kallerhoff B, Lange D et al
(2007) Functional proteomic view of metabolic
regulation in “ Aromatoleum aromaticum
strain EbN1. Proteomics 7:2222-2239
58. Trautwein K, Kühner S, Halder T et al (2008)
Solvent stress response of the denitrifying strain
EbN1. Appl Environ Microbiol 74:2267-2274
Search WWH ::




Custom Search