Agriculture Reference
In-Depth Information
1-methylcylcopropane (1-MCP), has opened up exciting
new knowledge and insights. The peel and pulp of banana
have different feedback mechanisms for C 2 H 4 biosynthesis.
Once ripening has begun, in the peel ethylene reduces
the  activity of ACC synthase, ACC oxidase and MACC
transferase, reducing subsequent ethylene evolution. In the
pulp, once ripening has begun, ethylene enhances the
activity of ACC synthase and ACC oxidase and ethylene
evolution is promoted until the ACC oxidase runs out of
co-factors. Ethylene evolution from intact fruit during
ripening needs to be interpreted in the light of these differ-
ences between the peel and the pulp. Identification of
the genes that are up- or down-regulated during ripening
is  invaluable for supporting physiological knowledge
and opening new questions about ripening in bananas and
plantains.
Banks, N.H. (1983) Evaluation of methods for determining
internal gases in banana fruit. Journal of Experimental
Botany , 34 , 871-879.
Banks, N.H. (1984) Studies of the banana fruit surface in rela-
tion to the effects of Tal Pro-long coating on gaseous
exchange. Scientia Horticulturae , 24 , 279-286.
Banks, N.H. (1985a) The oxygen affinity of
1-aminocyclopropane-1-carboxylic acid oxidation in slices
of banana fruit tissue. In: Ethylene and Plant Development
(ed. J.A. Roberts & G.A. Tucker), pp. 29-36. Butterworths,
London.
Banks, N.H. (1985b) Responses of banana fruit to Pro-long
coating at different times relative to the initiation of ripen-
ing. Scientia Horticulturae , 26 , 149-157.
Beaulieu, J.C., Peiser, G. & Saltveit, M.E. (1997) Acetaldehyde
is a causal agent responsible for ethanol-induced ripening
inhibition in tomato fruit. Plant Physiology , 113 , 431-439.
Blackbourn, H.D., Jeger, M.J., John, P. & Thompson, A.K.
(1990) Inhibition of degreening in the peel of bananas
ripened at tropical temperatures. 3. Changes in the plastid
ultrastructure and chlorophyll-protein complexes accompa-
nying ripening in bananas and plantains. Annals of Applied
Biology , 117 , 147-161.
Blake, J.R. & Peacock, B.C. (1971) Effect of temperature on
the preclimacteric life of bananas. Queensland Journal of
Agricultural and Animal Sciences , 28 , 243-248.
Brändle, R. (1968) Die Verteilung der Sauerstoffkonzentra-
tionen in fleischigen Speicherorganen (Äpfel, Bananen und
Kartoffelknollen). Berichte Schweizerischen Botanischen
Gesellschaft , 78 , 330-364.
Blankenship, S.M. & Dole, J.M. (2000) 1-Methylcyclopropene:
a review. Postharvest Biology and Technology , 28 , 1-25.
Burton, W.G. (1982) Postharvest Physiology of Food Crops .
Longman, London.
Chamara, D., Illeperuma, K., Galappatty, P.T. & Sarananda,
K.H. (2000) Modified atmosphere packaging of 'Kolikuttu'
bananas at low temperature. Journal of Horticultural
Science and Biotechnology , 75 , 92-96.
Chillet, M. & de Lapeyre de Bellaire, L. (2002) Variability in
the production of wound ethylene in bananas from the
French West Indies. Scientia Horticulturae , 96 , 127-137.
Choehom, R., Ketsa, S. & van Doorn, W.G. (2004) Senescent
spotting of banana peel is inhibited by modified atmosphere
packaging. Postharvest Biology and Technology , 31 , 167-175.
Dadzie, B.K. (1998) Post-harvest characteristics of black
Sigatoka resistant banana, cooking banana and plantain
hybrids. INIBAP Technical Guidelines 4. IPGRI, Rome and
INIBAP, Montpellier.
Davey, M.W., Keulemans, J. & Swennen, R. (2006) Methods
for the efficient quantification of fruit provitamin A con-
tents. Journal of Chromatography A , 1136 , 176-184.
Davey, M.W., Stals, E., Ngoh-Newilah, G., Tomekpe, K.,
Lusty, C., Markham, R., Swennen, R. & Keulemans, J.
(2007) Sampling strategies and variability in fruit pulp
micronutrient contents of West and Central African bananas
ACKNOWLEDGEMENTS
We are grateful to T.D. Colmer, R.L. Swennen, R.A. Romero,
M. Plainsirichai, W. Mekwatanakarn and W.  Armstrong
who made many useful comments on this chapter. Prof.
W. Armstrong kindly contributed Equations 1.1 to 1.4.
REFERENCES
Acedo, A.L. & Bautista, O.K. (1993) Banana fruit response to
ethylene at different concentrations of oxygen and carbon
dioxide. ASEAN Food Journal , 8 , 54-60.
Agravante, J.U., Esguerra, E.B., Pepito, M.F., Lizada, M.C.C.,
Matsui, T., Kawada, K. & Kitagawa, H. (1994) Some bio-
chemical changes in ethylene- and ethanol-treated banana.
In: Postharvest Biochemistry of Plant Food-materials in the
Tropics (ed. I. Uritani, V.V. Garcia & E.M.T. Mendoza),
pp. 149-163. Japan Scientific Societies Press, Tokyo.
Aguilar, E.A., Turner, D.W., Gibbs, D.J., Armstrong, W. &
Sivasithamparam, K. (2003) Oxygen distribution and move-
ment, respiration and nutrient loading in banana roots
( Musa spp. L.) subjected to aerated and oxygen-depleted
environments. Plant and Soil , 253 , 91-102.
Armstrong, W., Beckett, P.M., Justin, S.H.F.W. & Lythe, S.
(1991) Modelling, and other aspects of root aeration by dif-
fusion. In: Plant Life under Oxygen Deprivation (ed. M.B.
Jackson, D.D. Davies & H. Lambers), pp. 267-282. SPB
Academic Publishing, The Hague.
Armstrong, W., Cousins, D., Armstrong, J., Turner, D.W. &
Beckett, P.M. (2000) Oxygen distribution in wetland plant
roots and permeability barriers to gas exchange with the
rhizosphere: a microelectrode and modelling study with
Phragmites australis . Annals of Botany , 86 , 687-703.
Bagnato, N., Sedgley, M., Barrett, R. & Klieber, A. (2003)
Effect of ethanol vacuum infiltration on the ripening of
'Cavendish bananas' cv. Williams. Postharvest Biology and
Technology , 27 , 337-340.
Search WWH ::




Custom Search