Agriculture Reference
In-Depth Information
Lichtenthaler, H.K., Rohmer, M., and Schwender, J. 1997. Two independent biochemical pathways for isopentenyl
diphosphate and isoprenoid biosynthesis in higher plants. Physiol. Plant., 101: 643-652.
Loguercio, L.L., Scott, H.C., Trolinder, N.L., and Wilkins, T.A. 1999. Hmg-CoA reductase gene family in Cotton
( Gossypiumhirsutum L.): unique structural features and differential expression of hmg2 potentially associated
with synthesis of specific isoprenoids in developing embryos. Plant Cell Physiol., 40: 750-761.
Liscum, L., Finer-Moore, J., Stroud, R.M., Brown, K.L., and Goldstein, J.L. 1985. Domain structure of 3-hydroxy-
3-methylglutaryl coenzyme A reductase, a glycoprotein of the endoplasmic reticulum. J. Biol. Chem., 260:
522-530.
Lois, L.M., Rodrıguez, C.M., Gallego, F., Campos, N., and Boronat, A. 2000. Carotenoid biosynthesis during
tomato fruit development: regulatory role of 1-deoxy-D-xylulose 5-phosphate synthase. Plant J., 22: 503-513.
Maldonado-Mendoza, I.E., Vincent, R.M., and Nessler, C.L. 1997. Molecular characterization of three differen-
tially expressed members of the Camptothecaacuminata 3-hydroxy-3-methylglutaryl CoA reductase (HMGR)
gene family. Plant Mol. Biol., 34: 781-790.
Mandel, M.A., Feldmann, K.A., Herrera-Estrella, L., Rocha-Sosa, M., and Leon, P. 1996. CLA1, a novel gene
required for chloroplast development, is highly conserved in evolution. Plant J., 9: 649-658.
Mayne, S.T. 1996.
-Carotene, carotenoids and disease prevention in humans. FASEB J., 10: 690-701.
McCaskill, D. and Croteau, R. 1997. Prospects for the bioengineering of isoprenoid biosynthesis. Adv. Biochem.
Eng., 55: 109-146.
McGarvey, D.J. and Croteau, R. 1995 Terpenoid metabolism. Plant Cell, 7: 1015-1026.
Mustilli, A.C., Fenzi, F., Ciliento, R., Alfano, F., and Bowler, C. 1999. Phenotype of the tomato high pigment-2
mutant is caused by a mutation in the tomato homolog of DEETIOLATED1. Plant Cell, 11: 145-157.
Narita, J.O. and Gruissem, W. 1989. Tomato hydroxymethylglutaryl-CoA reductase is required early in fruit
development but not during ripening. Plant Cell, 1: 181-190.
Neff, M.M., Fankhauser, C., and Chory, J. 2000. Light and indicator of time and place. Genes Dev
β
.
, 14: 271-275.
Nelson, A.J., Doerner, P.W., Zhu, Q., and Lamb, C.J. 1994. Isolation of a monocot 3-hydroxy-3-methylglutaryl
coenzyme A reductase gene that is elicitor-inducible. Plant Mol. Biol., 25: 401-412.
Newman, J.D. and Chappell, J. 1999. Isoprenoid biosynthesis in plants: carbon partitioning within the cytoplasmic
pathway. Crit. Rev. Biochem. Mol. Biol
, 34: 95-106.
Paliyath, G., Whiting, M.D., Stasiak, M.A., Murr, D.P., and Clegg, B.S. 1997. Volatile production and fruit quality
during development of superficial scald in Red Delicious apples. Food Res. Int., 30: 95-103.
Pandit, J., Danley, D.E., Schulte, G.K., Mazzalupo, S., Pauly, T.A., Hayward, C.M., Hamanaka, E.S., Thompson,
J.F., and Harwood, H.J., Jr. 2000. Crystal structure of human squalene synthase. A key enzyme in cholesterol
biosynthesis. J. Biol. Chem., 275: 30610-30617.
Pechous, S.W. and Whitaker, B.D. 2004. Cloning and functional expression of an (E,E)-alpha-farnesene synthase
cDNA from peel tissue of apple fruit. Planta, 219: 84-94.
Pecker, I., Chamovitz, D., Linden, H., Sandmann, G., and Hirschberg, J. 1992. A single polypeptide catalyzing
the conversion of phytoene to zeta-carotene is transcriptionally regulated during tomato fruit ripening. Proc.
Natl. Acad. Sci. U.S.A., 89: 4962-4966.
Peters, J.L., van Tuinen, A., Adamse, P., Kendrick, RE., and Koornneef, M. 1989. High pigment mutants of tomato
exhibit high sensitivity for phytochrome action. J. Plant Physiol., 134: 661-666.
Piironen, V., Dindsay, D.G., Miettinen, T.A., Toivo, J., and Lampi, A.-M. 2000. Plant sterols: biosynthesis, bio-
logical function and their importance to human nutrition. J. Sci. Food. Agric., 80: 939-966.
Quail, P.H. 2002. Phytochrome photosensory signaling networks. Nat. Rev. Mol. Cell Biol., 3: 85-93.
Reynard, G.B. 1956. Origin of webb special (Black Queen) in tomato. Rep. Tomato Genet. Coop., 6: 22.
Rodrıguez-Concepcion, M., Campos, N., Lois, L.M., Maldonado, C., Hoeffler, J.F., Grosdemange-Billiard, C.,
Rohmer, M., and Boronat, A. 2000. Genetic evidence of branching in the isoprenoid pathway for the pro-
duction of isopentyl diphosphate and dimethylallyl diphosphate in Escherichia coli . FEBS Lett., 473: 328-
332.
Rodrıguez-Concepcion, M. and Gruissem, W. 1999. Arachidonic acid alters tomato HMG expression and fruit
growth and induces 1-hydroxy-3-methylglutaryl coenzyme A reductase-independent lycopene accumulation.
Plant Physiol., 119: 441-448.
Rohmer, M. 1999. The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria,
algae and higher plants. Nat. Prod. Rep., 16: 565-574.
Ronen, G., Carmel, G.L., Zamir, D., and Hirschberg, J. 2000. An alternative pathway to beta-carotene formation
in plant chromoplasts discovered by map-based cloning of Beta and old-gold color mutations in tomato. Proc.
Natl. Acad. Sci. U.S.A., 97: 11102-11107.
Ronen, G., Cohen, M., Zamir, D., and Hirschberg, J. 1999. Regulation of carotenoid biosynthesis during tomato
.
Search WWH ::




Custom Search