Biomedical Engineering Reference
In-Depth Information
[48] F. Aubépart and N. Franceschini, Bio-inspired optic
flow sensors based on FPGA: application to micro-air-
vehicles, Microproc Microsys 31 (2007), 408-419.
[49] J. Chahl and A. Mizutani, Biomimetic attitude and ori-
entation sensors, IEEE Sens J 12 (2012), 289-297.
[50] D.C. O'Carroll, Feature-detecting neurons in dragon-
flies, Nature 362 (1993), 541-543.
[51] R.S.A. Brinkworth and D.C. O'Carroll, Robust models
for optic flow coding in natural scenes inspired by
insect biology, PLoS Comput Biol 5 (2009), 1-14.
[52] J.G. Daugman, Uncertainty relation for resolution in
space, spatial frequency, and orientation optimized by
two-dimensional visual cortical filters, J. Opt. Soc. Am.
A 2 (1985), 1160-1169.
[53] J.G. Daugman, Complete discrete 2-D Gabor trans-
forms by neural networks for image analysis and com-
pression, IEEE Trans Acoust Speech Signal Process 36
(1988), 1169-1179.
[54] E.H. Adelson and J.R. Bergen, Spatiotemporal energy
models for the perception of motion, J Opt Soc Am A 2
(1985), 284-299.
[55] A. Borst, Models of motion detection, Nat Neurosci
Suppl 3 (2000), 1168.
[56] J. Haag, W. Denk, and A. Borst, Fly motion vision is
based on Reichardt detectors regardless of the signal-to-
noise ratio, Proc Natl Acad Sci 101 (2004), 16333-16338.
[57] A. Borst and M. Egelhaaf, Principles of visual motion
detection, Trends Neurosci 12 (1989), 297-306.
[58] S.B. Laughlin and R.C. Hardie, Common strategies for
light adaptation in the peripheral visual systems of fly
and dragonfly, J Comp Physiol 128 (1978), 319-340.
[59] B.K. Dean, C.H.G. Wright, and S.F. Barrett, The design
of an analog module for sensor adaptation to changes
in ambient light, ISA Biomed Sci Intrum 45 (2009),
185-190.
[60] B.K. Dean, C.H.G. Wright, and S.F. Barrett, Advances
in sensor adaptation to changes in ambient light: a bio-
inspired solution, ISA Biomed Sci Intrum 46 (2010),
20-25.
[61] B.K. Dean, C.H.G. Wright, and S.F. Barrett, Preliminary
tests of a possible outdoor light adaptation solution of
a fly inspired visual sensor: a biomimetic solution, ISA
Biomed Sci Intrum 47 (2011), 147-152.
[62] H.K. Hartline, H.G. Wagner, and F. Ratliff, Inhibition in
the eye of the limulus, J Gen Physiol 39 (1956),
651-673.
[63] K.H. Strube, Musca domestica inspired vision sensor car-
tride modeling , Master's thesis, University of Wyoming
(2010).
[64] N. Petkov, T. Lourens, and P. Kruizinga, Lateral inhibi-
tion in cortical filters, Proceedings of the international
conference on digital signal processing and international
conference on computer applications to engineering systems
(1993), 122-129.
[65] M.V. Srinivasan, S.W. Zhang, M. Lehrer, and
T.S. Collett, Honeybee navigation en route to the goal:
visual flight control and odometry, J Exp Biol 199 (1996),
237-244.
[66] R. Hardie, Functional organization of the fly retina, in
Progress in sensory physiology , vol. V (D. Ottoson, ed.),
Springer-Verlag, New York, NY, USA (1985), 1-79.
[67] V. Braitenberg and P. Debbage, A regular net of recipro-
cal synapses in the visual system of the fly Musca
domestica , J Comput Physiol 90 (1974), 25-31.
[68] V. Braitenberg, Patterns of projection in the visual
system of the fly: I. retina-lamina projections, Exp Brain
Res 3 (1967), 271-298.
[69] A.W. Snyder, Acuity of compound eyes: physical limi-
tations and design, J Comp Physiol 116 (1977), 161-182.
[70] A.W. Snyder, D.G. Stavenga, and S.B. Laughlin, Spatial
information capacity of compound eyes, J Comp Physiol
116 (1977), 183-207.
[71] A.W. Snyder, Physics of vision in compound eyes, in
Handbook of sensory physiology , vol. VII/6A (H. Autrum,
ed.), Springer-Verlag, New York, NY, USA (1979),
225-313.
[72] L.A. Popp, E.S. Tomberlin, S.F. Barrett, and
C.H.G. Wright, Musca domestica lamina monopolar cell
response to visual stimuli and their contribution to
early motion detection, ISA Biomed Sci Intrum 43 (2007),
134-139.
[73] E.S. Tomberlin, Musca domestica's large monopolar cell
responses to visual stimuli , Master's thesis, University of
Wyoming (2004).
[74] M. Juusola and A.S. French, Visual acuity for moving
objects in first- and second-order neurons of the fly
compound eye, J Neurophysiol 77 (1997), 1487-1495.
[75] B. Pick, Specific misalignments of rhabdomere visual
axes in the neural superposition eye of dipteran flies,
Biol Cybern 26 (1977), 215-224.
[76] V. Braitenberg and H. Hauser-Holschuh, Patterns of pro-
jection in the visual system of the fly: II. Quantitative
aspects of second-order neurons in relation to models of
movement perception, Exp Brain Res 16 (1972), 184-209.
[77] M. Wilcox, D. Thelen Jr., G. Peake, S. Hersee, K. Scott,
and C. Abdallah, An analog model of the retinal infor-
mation processing in the eye of the fly, Proceedings of the
6th NASA symposium on VLSI design (1997), 3.4.1-3.4.15.
[78] M.J. Wilcox and D.C. Thelen Jr., A retina with parallel
input and pulsed output, extracting high-resolution
information, IEEE Trans Neural Networks 10 (1999),
574-583.
[79] N. Strausfeld and J. Campos-Ortega, The L4 monopolar
neuron: a substrate for lateral interaction in the visual
system of the fly, Brain Res 59 (1973), 97-117.
[80] D.W. Arnett, Spatial and temporal integration proper-
ties of units in first optic ganglion of dipterans, J Neu-
rophysiol 35 (1972), 429-444.
Search WWH ::




Custom Search