Biomedical Engineering Reference
In-Depth Information
[27] S.M. Rossnagel, A. Sherman, and F. Turner, Plasma-
enhanced atomic layer deposition of Ta and Ti for inter-
connect diffusion barriers, J Vac Sci Technol A 18 (2000),
2016-2020.
[28] H. Kim and S.M. Rossnagel, Growth kinetics and initial
stage growth during plasma-enhanced Ti atomic layer
deposition, J Vac Sci Technol A 20 (2002), 802-808.
[29] M. Knez, A. Kadri, C. Wege, U. Gösele, H. Jeske, and
K. Nielsch, Atomic layer deposition on biological mac-
romolecules: Metal oxide coating of tobacco mosaic
virus and ferritin, Nano Lett 6 (2006), 1172-1177.
[30] J. Aarik, A. Aidla, T. Uustare, and V. Sammelselg, Mor-
phology and structure of TiO 2 thin films grown by
atomic layer deposition, J Cryst Growth 148 (1995),
268-275.
[31] J. Keranen, C. Guimon, E. Iiskola, A. Auroux, and L.
Niinisto, Surface-controlled gas-phase deposition and
characterization of highly dispersed vanadia on silica,
J Phys Chem B 107 (2003), 10773-10784.
[32] E. Guziewicz, I.A. Kowalik, M. Godlewski, K. Kopalko,
V. Osinniy, A. Wójcik, S. Yatsunenko, E. Łusakowska,
W. Paszkowicz, and M. Guziewicz, Extremely low tem-
perature growth of ZnO by atomic layer deposition, J
Appl Phys 103 (2008), 033515.
[33] D.M. King, X. Liang, P. Li, and A.W. Weimer, Low-
temperature atomic layer deposition of ZnO films on
particles in a fluidized bed reactor, Thin Solid Films 516
(2008), 8517-8523.
[34] J. Meyer, P. Görrn, F. Bertram, S. Hamwi, T. Winkler,
H.H. Johannes, T. Weimann, P. Hinze, T. Riedl, and W.
Kowalsky, Al 2 O 3 /ZrO 2 nanolaminates as ultrahigh
gas-diffusion barriers—a strategy for reliable encapsu-
lation of organic electronics, Adv Mater 21 (2009),
1845-1849.
[35] J. Richter, R. Seidel, R. Kirsch, M. Mertig, W. Pompe, J.
Plaschke, and H.K. Schackert, Nanoscale palladium
metallization of DNA, Adv Mater 12 (2000), 507-510.
[36] M. Knez, K. Nielsch, A.J. Patil, S. Mann, and U. Gösele,
Atomic layer deposition on biological macromolecules,
ECS Trans 3 (2007), 219-225.
[37] D.B. Farmer and R.G. Gordon, Atomic layer deposition
on suspended single-walled carbon nanotubes via gas-
phase noncovalent functionalization, Nano Lett 6 (2006),
699-703.
[38] G. Singh, A.M. Bittner, S. Loscher, N. Malinowski, and
K. Kern, Electrospinning of diphenylalanine nano-
tubes, Adv Mater 20 (2008), 2332-2336.
[39] T.H. Han, J.K. Oh, J.S. Park, S.-H. Kwon, S.-W. Kim, and
S.O. Kim, Highly entangled hollow TiO 2 nanoribbons
templating diphenylalanine assembly, J Mater Chem 19
(2009), 3512-3516.
[40] S.-W. Kim, T.H. Han, J. Kim, H. Gwon, H.-S. Moon,
S.-W. Kang, S.O. Kim, and K. Kang, Fabrication and elec-
trochemical characterization of TiO 2 three-dimensional
nanonetwork based on peptide assembly, ACS Nano 3
(2009), 1085-1090.
[41] T.H. Han, H.-S. Moon, J.O. Hwang, S.I. Seok, S.H. Im,
and S.O. Kim, Peptide-templating dye-sensitized solar
cells, Nanotechnology 21 (2010), 185601.
[42] G.-M. Kim, S.-M. Lee, G.H. Michler, H. Roggendorf, U.
Gösele, and M. Knez, Nanostructured pure anatase
titania tubes replicated from electrospun polymer fiber
templates by atomic layer deposition, Chem Mater 20
(2008), 3085-3091.
[43] R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E.
Kojima, A. Kitamura, M. Shimohigoshi, and T. Watan-
abe, Light-induced amphiphilic surfaces, Nature 388
(1997), 431-432.
[44] U. Bach, D. Lupo, P. Comte, J.E. Moser, F. Weissortel, J.
Salbeck, H. Spreitzer, and M. Grätzel, Solid-state dye-
sensitized mesoporous TiO 2 solar cells with high
photon-to-electron conversion efficiencies, Nature 395
(1998), 583-585.
[45] S.-M. Lee, G. Grass, G.-M. Kim, C. Dresbach, L. Zhang,
U. Gösele, and M. Knez, Low-temperature ZnO atomic
layer deposition on biotemplates: flexible photocata-
lytic ZnO structures from eggshell membranes, Phys
Chem Chem Phys 11 (2009), 3608-3614.
[46] S.-M. Lee, E. Pippel, O. Moutannabir, I. Gunkel, T.
Thurn-Albrecht, and M. Knez, Improved mechanical
stability of dried collagen membrane after metal infil-
tration, ACS Appl Mater Interf 2 (2010), 2436-2441.
[47] M. Kemell, V. Pore, M. Ritala, M. Leskelä, and M.
Linden, Atomic layer deposition in nanometer-level
replication of cellulosic substances and preparation of
photocatalytic TiO 2 /cellulose composites, J Am Chem
Soc 127 (2005), 14178-14179.
[48] M. Kemell, V. Pore, M. Ritala, and M. Leskelä, Ir/
oxide/cellulose composites for catalytic purposes pre-
pared by atomic layer deposition, Chem Vap Deposit 12
(2006), 419-422.
[49] D.K. Hyde, K.J. Park, S.M. Stewart, J.P. Hinestroza, and
G.N. Parsons, Atomic layer deposition of conformal
inorganic nanoscale coatings on three-dimensional
natural fiber systems: effect of surface topology on film
growth characteristics, Langmuir 23 (2007), 9844-9849.
[50] G.K. Hyde, G. Scarel, J.C. Spagnola, Q. Peng, K. Lee, B.
Gong, K.G. Roberts, K.M. Roth, C.A. Hanson, C.K.
Devine, S.M. Stewart, D. Hojo, J.-S. Na, J.S. Jur, and
G.N. Parsons, Atomic layer deposition and abrupt
wetting transitions on nonwoven polypropylene and
woven cotton fabrics, Langmuir 26 (2010), 2550-2558.
[51] R. de la Rica and H. Matsui, Applications of peptide
and protein-based materials in bionanotechnology,
Chem Soc Rev 39 (2010), 3499-3509.
[52] J. Liu, Y. Mao, E. Lan, D.R. Banatao, G.J. Forse, J. Lu,
H.-O. Blom, T.O. Yeates, B. Dunn, and J.P. Chang, Gen-
eration of oxide nanopatterns by combining self-assem-
Search WWH ::




Custom Search