Biomedical Engineering Reference
In-Depth Information
[17] D.-H. Ko, J.R. Tumbleston, K.J. Henderson, L.E. Euliss,
J.M. DeSimone, R. Lopez, and E.T. Samulski, Biomi-
metic microlens array with antireflective “moth-eye”
surface, Soft Matter 7 (2011), 6404-6407.
[18] D.P. Pulsifer, A. Lakhtakia, R.J. Martín-Palma, and C.G.
Pantano, Mass fabrication technique for polymeric rep-
licas of arrays of insect corneas, Bioinsp Biomim 5 (2010),
036001.
[19] G. Xie, G. Zhang, F. Lin, J. Zhang, Z. Liu, and S. Mu,
The fabrication of subwavelength anti-reflective nano-
structures using a bio-template, Nanotechnology 19
(2008), 095605.
[20] J. Huang, X. Wang, and Z.L. Wang, Controlled replica-
tion of butterfly wings for achieving tunable photonic
properties, Nano Lett 6 (2006), 2325-2331.
[21] M. Knez, A. Kadri, C. Wege, U. Gösele, H. Jeske, and
K. Nielsch, Atomic layer deposition on biological mac-
romolecules: metal oxide coating of tobacco mosaic
virus and ferritin, Nano Lett 6 (2006), 1172-1177.
[22] D.P. Gaillot, O. Deparis, V. Welch, B.K. Wagner, J.P.
Vigneron, and C.J. Summers, Composite organic-inor-
ganic butterfly scales: production of photonic struc-
tures with atomic layer deposition, Phys Rev E 78
(2008), 031922.
[23] A. Lakhtakia, R.J. Martín-Palma, M.A. Motyka, and
C.G. Pantano, Fabrication of free-standing replicas of
fragile, laminar, chitinous biotemplates, Bioinsp Biomim
4 (2009), 034001.
[24] R.J. Martín-Palma, C.G. Pantano, and A. Lakhtakia,
Replication of fly eyes by the conformal-evaporated-
film-by-rotation, Nanotechnology 19 (2008), 355704.
[25] R.J. Martín-Palma, C.G. Pantano, and A. Lakhtakia,
Biomimetization of butterfly wings by the conformal-
evaporated-film-by-rotation technique for photonics,
Appl Phys Lett 93 (2008), 083901.
[26] J.W. Galusha, L.R. Richey, M.R. Jorgensen, J.S. Gardner,
and M.H. Bartl, Study of natural photonic crystals in
beetle scales and their conversion into inorganic struc-
tures via a sol-gel bio-templating route, J Mater Chem
20 (2010), 1277-1284.
[27] J.W. Galusha, M.R. Jorgensen, and M.H. Bartl, Diamond-
structured titania photonic band gap crystals from bio-
logical templates, Adv Mater 22 (2010), 107-110.
[28] M.R. Jorgensen, B. Yonkee, and M.H. Bartl, Solid and
hollow inorganic replicas of biological photonic crys-
tals, Scripta Mater 65 (2011), 954-957.
[29] W. Zhang, D. Zhang, T. Fan, J. Gu, J. Ding, H. Wang, Q.
Guo, and H. Ogawa, Novel photoanode structure tem-
plated from butterfly wing scales, Chem Mater 21 (2008),
33-40.
[30] S. Zhu, X. Liu, Z. Chen, C. Liu, C. Feng, J. Gu, Q. Liu,
and D. Zhang, Synthesis of Cu-doped WO 3 materials
with photonic structures for high performance sensors,
J Mater Chem 20 (2010), 9126-9132.
[31] A.S. Deshpande, I. Burgert, and O. Paris, Hierarchically
structured ceramics by high-precision nanoparticle
casting of wood, Small 2 (2006), 994-998.
[32] S. Weiner, L. Addadi, and H.D. Wagner, Materials
design in biology, Mater Sci Eng C 11 (2000), 1-8.
[33] P. Fratzl, Cellulose and collagen: from fibres to tissues,
Curr Opin Colloid Interf Sci 8 (2003), 32-39.
[34] J. Aizenberg, J.C. Weaver, M.S. Thanawala, V.C. Sundar,
D.E. Morse, and P. Fratzl, Skeleton of Euplectella sp.:
structural hierarchy from the nanoscale to the macro-
scale, Science 309 (2005), 275-278.
[35] J. Wijnhoven, L. Bechger, and W.L. Vos, Fabrication and
characterization of large macroporous photonic crys-
tals in titania, Chem Mater 13 (2001), 4486-4499.
[36] S.M. Holmes, B.E. Graniel-Garcia, P. Foran, P. Hill,
E.P.L. Roberts, B.H. Sakakini, and J.M. Newton, A novel
porous carbon based on diatomaceous earth, Chem
Commun (2006), 2784-2785.
[37] X. Yu, Y.-J. Lee, R. Furstenberg, J.O. White, and P.V.
Braun, Filling fraction dependent properties of inverse
opal metallic photonic crystals, Adv Mater 19 (2007),
1689-1692.
[38] B.H. Juárez, C. López, and C. Alonso, Formation of zinc
inverted opals on indium tin oxide and silicon sub-
strates by electrochemical deposition, J Phys Chem B 108
(2004), 16708-16712.
[39] B. Gates, Y. Yin, and Y. Xia, Fabrication and characteri-
zation of porous membranes with highly ordered three-
dimensional periodic structures, Chem Mater 11 (1999),
2827-2836.
[40] D.J. Brinker and G.W. Scherrer, Sol−gel science, the
physics and chemistry of sol−gel processing , Academic
Press, San Diego, CA, USA (1990).
[41] J. Livage, M. Henry, and C. Sanchez, Sol-gel chemistry
of transition metal oxides, Prog Solid State Chem 18
(1988), 259-341.
[42] M.H. Bartl, S.W. Boettcher, K.L. Frindell, and G.D.
Stucky, 3-D molecular assembly of function in titania-
based composite material systems, Acc Chem Res 38
(2005), 263-271.
[43] M.R. Jorgensen, J.W. Galusha, and M.H. Bartl, Strongly
modified spontaneous emission rates in diamond-
structured photonic crystals, Phys Rev Lett 107 (2011),
143902.
[44] E. Yablonovitch, Photonic crystals: semiconductors of
light, Sci Am 285 (6) (December 2001), 47-55.
[45] J. Joannopoulos, R. Meade, and J. Winn, Photonic crystals ,
Princeton University Press, Princeton, NJ, USA (1995).
[46] E. Yablonovitch, Inhibited spontaneous emission in
solid-state physics and electronics, Phys Rev Lett 58
(1987), 2059-2062.
[47] S. John, Strong localization of photons in certain disor-
dered dielectric superlattices, Phys Rev Lett 58 (1987),
2486-2489.
Search WWH ::




Custom Search