Biomedical Engineering Reference
In-Depth Information
[32] G. Baldassarre, S. Nolfi, and D. Parisi, Evolving mobile
robots able to display collective behaviors, Artif Life 9
(2003), 255-267.
[33] S. Nouyan, R. Gross, M. Bonani, F. Mondada, and M.
Dorigo, Teamwork in self-organized robot colonies,
IEEE Trans Evol Comput 13 (2009), 695-711.
[34] W.K. Purves, D. Sadava, G.H. Orians, and H.C. Heller,
Life—the science of biology , Sinauer, Sunderland, MA,
USA (2004).
[35] B.J. Blaiszik, S.L.B. Kramer, S.C. Olugebefola, J.S. Moore,
N.R. Sottos, and S.R. White, Self-healing polymers and
composites, Annu Rev Mater Res 40 (2010), 179-211.
[36] A.R. Hamilton, N.R. Sottos, and S.R. White, Self-heal-
ing of internal damage in synthetic vascular materials,
Adv Mater 22 (2010), 5159-5163.
[37] K.S. Toohey, N.R. Sottos, J.A. Lewis, J.S. Moore, and S.R.
White, Self-healing materials with microvascular net-
works, Nat Mater 6 (2007), 581-585.
[38] M. Rampf, O. Speck, T. Speck, and R. Luchsinger, Self-
repairing membranes for inflatable structures inspired
by a rapid wound sealing process of climbing plants, J
Bionic Eng 8 (2011), 242-250.
[39] R. Luchsinger, M. Pedretti, and A. Reinhard, Pressure
induced stability: from pneumatic structures to tensair-
ity, J Bionic Eng 1 (2004), 141-148.
[40] R. Luchsinger and A. Schmid, Bionische selbstreparieer-
ende Membranen für pneumatische Strukturen, Biomi-
metic convention , Biokon, Berlin, Germany (March 2011).
[41] R.H. Luchsinger, A. Pedretti, M. Pedretti, and P. Stein-
gruber, The new structural, in Progress in structural engi-
neering mechanics and computation (A. Zigoni, ed.),
Taylor & Francis, London, UK (2004).
[42] M. Rampf, O. Speck, T. Speck, and R.H. Luchsinger,
Structural and mechanical properties of flexible polyu-
rethane foams cured under pressure, J Cell Plast 48
(2012), 49-65.
[43] P. Fleming, D. Muller, and P.W. Bateman, Leave it all
behind: a taxonomic perspective of autotomy in inver-
tebrates, Biol Rev 82 (2007), 481-510.
[44] A. Bellairs and S.V. Bryant, Autotomy and regeneration
in reptiles, in Biology of the reptilia , vol. 15B (G.C.F. Billet
and P.F.A. Maderson, eds.), Wiley, New York, NY, USA
(1985).
[45] M.J. Harrington, A. Masic, N. Holten-Andersen,
J.H. Waite, and P. Fratzl, Iron-clad fibers: a metal-based
biological strategy for hard flexible coatings, Science
328 (2010), 216-220.
[46] N. Holten-Andersen, H. Zhao, and J.H. Waite, Stiff
coatings on compliant biofibers: the cuticle of mytilus
californianus byssal threads, Biochemistry 48 (2009),
2752-2759.
[47] N. Holten-Andersen and J.H. Waite, Mussel-designed
protective coatings for compliant substrates, J Dent Res
87 (2008), 701-709.
[48] N. Holten-Andersen, Ph-induced metal-ligand cross-
links inspired by mussel yield self-healing polymer
networks with near-covalent elastic moduli, Proc Natl
Acad Sci 108 (2010), 2651-2655.
[49] A. Tero, S. Takagi, T. Saigusa, K. Ito, D.P. Bebber, M.D.
Fricker, K. Yumiki, R. Kobayashi, and T. Nakagaki,
Rules for biologically inspired adaptive network
design, Science 327 (2010), 439-442.
[50] T. Nakagaki and R.D. Guy, Intelligent behaviors of
amoeboid movement based on complex dynamics of
soft matter, Soft Matter 4 (2008), 57-67.
[51] A. Tero, K. Yumiki, R. Kobayashi, T. Saigusa, and
T. Nakagaki, Flow-network adaptation in Physarum
Amoebae, Theor Biosci 127 (2008), 89-94.
[52] A. Tero, R. Kobayashi, and T. Nakagaki, A mathemati-
cal model for adaptive transport network in path
finding by true slime mold, J Theor Biol 244 (2007),
553-564.
[53] L. Addadi, D. Joester, F. Nudelman, and S. Weiner,
Mollusk shell formation: a source of new concepts for
understanding biomineralization processes, Chem Eur
J 12 (2006), 980-987.
[54] D.M. Williamson and W.G. Proud, The conch shell as a
model for tougher composites, Int J Mater Eng Innov 2
(2011), 149-164.
[55] A.P. Jackson, J.F.V. Vincent, and R.M. Turner, Compari-
son of nacre with other ceramic composites, J Mater Sci
25 (1990), 3173-3178.
[56] A.P. Jackson, J.F.V. Vincent, and R.M. Turner, The
mechanical design of nacre, Proc R Soc Lond B 234
(1988), 415-440.
[57] T. Lenau, Nature inspired structural colour applica-
tions, in Biomimetic photonics (Olaf Karthaus, ed.),
Taylor & Francis, London, UK (2012).
[58] T. Lenau and M. Barfoed, Colours and metallic sheen
in beetle shells- a biomimetic search for material struc-
turing principles causing light interference, Adv Eng
Mater 10 (2008), 299-314.
[59] E. Munch, M.E. Launey, D.H. Alsem, E. Saiz,
A.P. Tomsia, and R.O. Ritchie, Tough bio-inspired
hybrid materials, Science 322 (2008), 1516-1520.
[60] S. Deville, E. Saiz, R.K. Nalla, and A.P. Tomsia, Freezing
as a path to build complex composites, Science 311
(2006), 515-518.
[61] K. Kendall, A.J. Howard, J.D. Birchall, P.L. Pratt,
B.A. Proctor, and S.A. Jefferis, The relation between
porosity, microstructure and strength, and the approach
to advanced cement-based materials, Phil Trans R Soc
Lond A 310 (1983), 139-153.
[62] G.M. Luz and J.F. Mano, Biomimetic design of materi-
als and biomaterials inspired by the structure of nacre,
Phil Trans R Soc Lond A 367 (2009), 1587-1605.
Search WWH ::




Custom Search