Biomedical Engineering Reference
In-Depth Information
[7] A. Abbott and M.S. Ellison (eds.), Biologically inspired
textiles , Woodhead Publishing, Cambridge, UK (2008).
[8] B.S. Bloom, M.D. Engelhart, E.J. Furst, W.H. Hill, and
D.R. Krathwohl, Taxonomy of educational objectives. The
classification of educational goals (B.S. Bloom, ed.), Hand-
book I: The Cognitive Domain, David McKay, New
York, NY, USA (1956).
[9] J. Abbas, Structures for organizing knowledge: exploring
taxonomies, ontologies, and other schemas , Neal-Schuman,
New York, NY, USA (2010).
[10] L. Romer and T. Scheibel, The elaborate structure of
spider silk: structure and function of a natural high
performance fiber, Prion 2 (2008), 154-161.
[11] J.M. Benyus, Biomimicry , Harper-Collins, New York,
NY, USA (2002).
[12] National Research Council (US), Inspired by biology: from
molecules to materials to machines , National Academies
Press, Washington, DC, USA (2008).
[13] A. Lazaris, S. Arcidiacono, Y. Huang, J.-F. Zhou,
F. Duguay, N. Chretien, E.A. Welsh, J.W. Soares, and
C.N. Karatzas, Spider silk fibers spun from soluble
recombinant silk produced in mammalian cells, Science
295 (2002), 472-476.
[14] S. Aoe, M. Nakaoka, K. Ido, Y. Tamai, F. Ohta, and
Y. Ayano, Availability of dietary fiber in extruded
wheat bran and apparent digestibility in rats of coexist-
ing nutrients, Cereal Chem 66 (1989), 252-256.
[15] D.R. Salem (ed.), Structure formation in polymeric fibers, ,
Hanser, Munich, Germany (2001).
[16] B.C. Goswami, J.G. Martindale, and F.L. Scardino,
Textile yarns: technology, structure, and applications , Wiley,
New York, NY, USA (1977).
[17] K. Hatch, Textile science , West, St. Paul, MN, USA (1993).
[18] L. Eadie and T.K. Ghosh, Biomimicry in textiles: past,
present and potential. An overview, J R Soc Interf 8
(2011), 761-775.
[19] J.F.V. Vincent, Stealing ideas from nature, in Deployable
structures (S. Pellegrino, ed.), Springer-Verlag, Vienna,
Austria (2001), 51-58.
[20] M.S. Ellison, Biomimetics and textile materials, in
Handbook of natural fibres volume 2: processing and applica-
tions (R. Kozlowski, ed.), Woodhead Publishing,
Cambridge, UK (2012).
[21] M. Mignanelli, K. Wani, J. Ballato, S. Foulger, and
P. Brown, Polymer microstructured fibers by one-step
extrusion, Opt Express 15 (2007), 6183-6189.
[22] N.J. Wagner and E.D. Wetzel, Advanced body armor
utilizing shear thickening fluids, US Patent 7226878
(issue date 5 June 2007).
[23] K.D. Sinclair, K. Webb, and P.J. Brown, The effect of
various denier capillary channel polymer fibers on the
alignment of NHDF cells and type I collagen, J Biomed
Mater Res A 95 (2010), 1194-1202.
[24] J.L. Van Leeuwen, J.H. De Groot, W.M. Kier, and
I.D. Walker, Evolutionary mechanics of protrusible ten-
tacles and tongues, Neth J Zool 50 (2000), 113-139.
[25] D. Trivedi, C.D. Rahn, W.M. Kier, and I.D. Walker, Soft
robotics: biological inspiration, state of the art, and
future research, Appl Bionics Biomech 5 (2008), 99-117.
[26] I. Luzinov, P. Brown, G. Chumanov, M. Drews, and
S. Minko, Ultrahydrophobic fibers: lotus approach , NTC Project
Report C04-CL06 (2006), http://www.ntcresearch.org/
pdf-rpts/Bref0607/C04-CL06-07.pdf (accessed 11 April
2013).
[27] K. Ramaratnam, K.S. Iyer, M.K. Kinnan, G. Chumanov,
P.J. Brown, and I. Luzinov, Ultrahydrophobic textiles
using nanoparticles: lotus approach, J Eng Fiber Fabr 3
(2008), 1-14.
[28] K.G. Kornev, I. Luzinov, P.J. Brown, V. Sa, D. Monaen-
kova, T. Andrukh, and J.Baker, Deployable wet-responsive
fibrous materials , NTC Project Report M08-CL10 (2009),
http://www.ntcresearch.org/pdf-rpts/AnRp09/
M08-CL10-A9.pdf (accessed 11 April 2013).
[29] P. Schroeder, J. Schotter, A. Shoshi, M. Eggeling,
O. Bethge, A. Hütten, and H. Brückl, Artificial cilia of
magnetically tagged polymer nanowires for biomi-
metic mechanosensing, Bioinsp Biomim 6 (2011), 1-9.
[30] K. Autumn, Y.A. Liang, S.T. Hsieh, W. Zesch, W.P.
Chan, T.W. Kenny, R. Fearing, and R.J. Full, Adhesive
force of a single gecko foot-hair, Nature 405 (2000),
681-685.
[31] F. Teulé, Genetic engineering of designed fiber proteins to
study structure/function relationships in fibrous proteins ,
PhD Thesis, Clemson University, (2003).
[32] D.P. Knight and F. Vollrath, Liquid crystals and flow
elongation in a spider's silk production line, Proc R Soc
Lond B 266 (1999), 519-523.
[33] R.F. Foelix, Biology of spiders , 2nd ed., Oxford University
Press, Oxford, UK (1996).
[34] S.J. Lombardi and D.L. Kaplan, The amino acid com-
position of major ampullate gland silk (dragline) of
Nephila clavipes (Araneae, Tetragnathidae), J Arachnol
18 (1990), 297-306.
[35] A. Simmons, C. Michal, and L. Jelinski, Molecular orien-
tation and two component nature of the crystalline frac-
tion of spider dragline silk, Science 271 (1996), 84-87.
[36] C.Y. Hayashi and R.V. Lewis, Evidence from flagelliform
silk cDNA for the structural basis of elasticity and modular
nature of spider silks, Mol Biol 275 (1998), 773-784.
[37] C.Y. Hayashi, N.H. Shipley, and R.V. Lewis, Hypothe-
ses that correlate the sequence, structure, and mechani-
cal properties of spider silk proteins, Int J Biol Macrom
24 (1999), 271-275.
[38] D.S. Fudge, N. Levy, S. Chiu, and J.M. Gosline, Com-
position, morphology and mechanics of hagfish slime,
J Exp Biol 208 (2005), 4613-4625.
Search WWH ::




Custom Search