Biomedical Engineering Reference
In-Depth Information
capillary endothelial cells to surfaces, J Am Chem Soc
120 (1998), 6548-6555.
[100] A. Brock, E. Chang, C.C. Ho, P. LeDuc, X.Y. Jiang, G.M.
Whitesides, and D.E. Ingber, Geometric determinants
of directional cell motility revealed using microcon-
tact printing, Langmuir 19 (2003), 1611-1617.
[101] G.M. Whitesides, E. Ostuni, S. Takayama, X. Jiang,
and D.E. Ingber, Soft lithography in biology and bio-
chemistry, Annu Rev Biomed Eng 3 (2001), 335-373.
[102] M.S. Lord, M. Foss, and F. Besenbacher, Influence of
nanoscale surface topography on protein adsorption
and cellular response, Nano Today 5 (1) (February.
2010), 66-78.
[103] N. Giovambattista, P.G. Debenedetti, and P.J. Rossky,
Hydration behavior under confinement by nanoscale
surfaces with patterned hydrophobicity and hydro-
philicity, J Phys Chem C 111 (2007), 1323-1332.
[104] H.C.V. Baeyer, The lotus effect, The Sciences 40 (2000),
12-15.
[105] J. Zhang and Y. Han, A topography/chemical compo-
sition gradient polystyrene surface: toward the inves-
tigation of the relationship between surface wettability
and surface structure and chemical composition,
Langmuir 24 (2007), 796-801.
[106] N. Zhao, X. Lu, X. Zhang, H. Liu, S. Tan, and J. Xu,
Progress in superhydrophobic surfaces, Prog Chem 19
(2007), 860-871.
[107] A. Marmur, Super-hydrophobicity fundamentals:
implications to biofouling prevention, Biofouling 22
(2006), 107-115.
[108] D.M. Spori, T. Drobek, S. Rcher, M. Ochsner, C. Spre-
cher, A. Hlebach, and N.D. Spencer, Beyond the lotus
effect: roughness influences on wetting over a wide
surface-energy range, Langmuir 20 (2008), 5411-5417.
[109] Y. Su, B. Ji, K. Zhang, H. Gao, Y. Huang, and K.
Hwang, Nano to micro structural hierarchy is crucial
for stable superhydrophobic and water-repellent sur-
faces, Langmuir 26 (2010), 4984-4989.
[110] L. Gao and T.J. McCarthy, Wetting 101, Langmuir 25
(2009), 14105-14115.
[111] T. Cass and F.S. Ligler, Immobilized biomolecules in anal-
ysis: a practical approach , Oxford University Press, New
York, NY, USA (1998).
[112] Z.-H. Xing, Y. Chang, and I.-K. Kang, Immobilization
of biomolecules on the surface of inorganic nanopar-
ticles for biomedical applications, Sci Tech Adv Mat 11
(2010), 014101.
[113] D. Samanta and A. Sarkar, Immobilization of bio-
macromolecules on self-assembled monolayers:
methods and sensor applications, Chem Soc Rev 40
(2011), 2567-2592.
[114] P. Baumann, P. Tanner, O. Onaca, and C.G. Palivan, Bio-
decorated polymer membranes: a new approach in diag-
nostics and therapeutics, Polymers 3 (2010), 173-192.
[115] M. Nosonovsky and B. Bhushan, Other biomimetic
surfaces, in Multiscale dissipative mechanisms and hierar-
chical surfaces (M. Nosonovsky and B. Bhushan, eds.),
Springer-Verlag, Berlin, Germany (2008), 243-250.
[116] K.S. Siow, L. Britcher, S. Kumar, and H.J. Griesser,
Plasma methods for the generation of chemically reac-
tive surfaces for biomolecule immobilization and cell
colonization—a review, Plasma Process Polym 3 (2006),
392-418.
[117] H. Shi, W.-B. Tsai, M.D. Garrison, S. Ferrari, and B.D.
Ratner, Template imprinted nanostructured surfaces
for protein recognition, Nature 398 (1999), 593-597.
[118] B.D. Ratner, Plasma deposition for biomedical applica-
tions: a brief review, J Biomat Sci Polym E 4 (1993), 3-11.
[119] H. Shi and B.D. Ratner, Template recognition of pro-
tein-imprinted polymer surfaces, J Biomed Mater Res
49 (2000), 1-11.
[120] B.D. Ratner, The engineering of biomaterials exhibit-
ing recognition and specificity, J Mol Recogn 9 (1996),
617-625.
[121] Y. Hirano, Y. Kando, T. Hayashi, K. Goto, and A.
Nakajima, Synthesis and cell attachment activity of
bioactive oligopeptides: RGD, RGDS, RGDV and
RGDT, J Biomed Mater Res 25 (1991), 1523-1534.
[122] Y. Hirano, Y. Kando, K. Goto, and A. Nakajima, Syn-
thesis and cell attachment activity of oligopeptides:
RGD, RGDS, RGDV, and RGDT, J Biomed Mater Res 25
(1991), 1523-1534.
[123] J.A. Neff, K.D. Caldwell, and P.A. Tresco, A novel
method for surface modification to promote cell
attachment to hydrophobic substrates, J Biomed Mater
Res 40 (1998), 511-519.
[124] A.E. Aksoy, V. Hasirci, and N. Hasirci, Surface modi-
fication of polyurethanes with covalent immobiliza-
tion of heparin, Macromol Symp 269 (2008), 145-153.
[125] A. Ulman, Wetting studies of molecularly engineered
surfaces, Thin Solid Films 273 (1996), 48-53.
[126] A. Ulman, S.D. Evans, Y. Shnidman, R. Sharma, J.E.
Eilers, and J.C. Chang, Concentration-driven surface
transition in the wetting of mixed alkanethiol mon-
olayers on gold, J Am Chem Soc
113 (1991),
1499-1506.
[127] H. Elwing, S. Welin, A. Askendal, U. Nillson, and I.
Lundstrom, A wettability gradient method for studies
of macromolecular interactions at the liquid/solid
interface, J Colloid Interf Sci 119 (1987), 203-210.
[128] T. Ueda-Yukoshi and T. Matsuda, Cellular responses
on a wettability gradient surface with continuous
variations in surface compositions of carbonate and
hydroxyl groups, Langmuir 11 (1995), 4135-4140.
[129] L. Wei, E.A. Vogler, T.M. Ritty, and A. Lakhtakia, A 2D
surface morphology-composition gradient panel for
protein-binding assays, Mater Sci Eng C 31 (2011),
1861-1866.
Search WWH ::




Custom Search