Biomedical Engineering Reference
In-Depth Information
[70] A. Pockels, On the relative contamination of the water
surface by equal quantities of different substances,
Nature 46 (1892), 418-419.
[71] N.T. Southall, K.A. Dill, and A.D.J. Haymet, A View of
the hydrophobic effect, J Chem Phys B 106 (2002),
521-533.
[72] M. Jacoby, Custom-made biomaterials, C&E News 79
(6) (February 2001), 30-35.
[73] A.S.G. Curtis, J.V. Forrester, C. McInnes, and F. Lawrie,
Adhesion of cells to polystyrene surfaces, J Cell Biol 97
(1983), 1500-1506.
[74] A. Curtis and C. Wilkinson, Ambiguities in the evi-
dence about cell adhesion problems with activation
events and with the structure of the cell-contact, Studia
biophysica 127 (1988), 75-82.
[75] N.F. Owens, D. Gingell, and A. Trommler, Cell adhe-
sion to hydroxyl groups of a monolayer film, J Cell Sci
91 (1988), 269-279.
[76] S. Margel, E.A. Vogler, L. Firment, T. Watt, S. Haynie,
and D.Y. Sogah, Peptide, protein, and cellular interac-
tions with self-assembled monolayer model surfaces,
J Biomed Mater Res 27 (1993), 1463-1476.
[77] E.A. Vogler, On the biomedical relevance of surface
spectroscopy, J Electron Spectrosc Rel Phenom 81 (1996),
237-247.
[78] E.A. Vogler and R.W. Bussian, Short-term cell-attach-
ment rates: a surface sensitive test of cell-substrate
compatibility, J Biomed Mater Res 21 (1987), 1197-
1211.
[79] E.A. Vogler, Thermodynamics of short-term cell adhe-
sion in vitro , Biophys J 53 (1988), 759-769.
[80] E.A. Vogler, A thermodynamic model of short-term cell
adhesion in vitro , Colloid Surface 42 (1989), 233-254.
[81] E.A. Vogler, J.C. Graper, G.R. Harper, L.M. Lander, and
W.J. Brittain, Contact activation of the plasma coagulation
cascade. 1. Procoagulant surface energy and chemistry, J
Biomed Mater Res 29 (1995), 1005-1016.
[82] S.R. Holmes-Farley, R.H. Reamey, T.J. McCarthy, J.
Deutch, and G.M. Whitesides, Acid-base behavior of
carboxylic acid groups covalently attached at the
surface of polyethylene: the usefulness of contact
angle in following the ionization of surface functional-
ity, Langmuir 1 (1985), 725-740.
plasma and factor XII by ion-exchange resins, Bioma-
terials 33 (2011), 9-19.
[86] X. Xu and A.M. Lenhoff, A Predictive Approach to Cor-
relating Protein Adsorption Isotherms on Ion-Exchange
Media, J Phys Chem B 112 (2008), 1028-1040.
[87] Y. Arima and H. Iwata, Effect of wettability and
surface functional groups on protein adsorption and
cell adhesion using well-defined mixed self-assem-
bled monolayers, Biomaterials 28 (2007), 3074-3082.
[88] M. Thery, V. Racine, A. Pepin, M. Piel, Y. Chen, J.-B.
Sibarita, and M. Bornens, The extracellular matrix
guides the orientation of the cell division axis, Nat Cell
Biol 7 (2005), 947-953.
[89] M. Thacry, V. Racine, M. Piel, A. Pacpin, A. Dimitrov,
Y. Chen, J.-B. Sibarita, and M. Bornens, Anisotropy of
cell adhesive microenvironment governs cell internal
organization and orientation of polarity, Proc Natl
Acad Sci 103 (2006), 19771-19776.
[90] R. Singhvi, A. Kumar, G.P. Lopez, G.N. Stephanopou-
los, D.I.C. Wang, G.M. Whitesides, and D.E. Ingber,
Engineering cell shape and function, Science 264
(1994), 696-698.
[91] Z. Nie and E. Kumacheva, Patterning surfaces with
functional polymers, Nat Mater 7 (2008), 277-290.
[92] B. Chehroudi and D.M. Brunette, Effects of surface
topography on cell behavior, in Encyclopedic handbook
of biomaterials and bioengineering Part A: materials
(D.L. Wise, D.J. Trantolo, D.E. Altobelli, M.J. Yaszem-
ski, J.D. Gresser, and R. Schwartz, eds.), Marcel
Dekker, New York, NY, USA (1995), 813-842.
[93] J.L. Charest and W.P. King, Engineering biomaterial
interfaces through micro and nano-patterning BioNa-
noFluidic MEMS, in BioNanoFluidic MEMS (P.J. Hesketh
and G.W. Wodruff, eds.), Springer, New York, NY, USA
(2008), 251-277.
[94] S. Mitragotri and J. Lahann, Physical approaches to
biomaterial design, Nat Mater 8 (2009), 15-23.
[95] P. Kingshott, G. Andersson, S.L. McArthur, and H.J.
Griesser, Surface modification and chemical surface
analysis of biomaterials, Curr Opin Chem Biol 15 (2011),
667-676.
[96] A. Welle and E. Gottwald, UV-based patterning of
polymeric substrates for cell culture applications,
Biomed Microdev 4 (2002), 33-41.
[83]
C.D. Bain and G.M. Whitesides, A study by contact
angle of the acid-base behavior of monolayers con-
taining w -Mercaptocarboxylic acids adsorbed on gold:
an example of reactive spreading, Langmuir 5 (1989),
1370-1378.
[97]
R. Miller, Z. Guo, E.A. Vogler, and C.A. Siedlecki, Plasma
coagulation response to surfaces with nanoscale hetero-
geneity, Biomaterials 27 (2006), 208-215.
[98]
A. Golas, P. Parhi, Z.O. Dimachkie, C.A. Siedlecki, and
E.A. Vogler, Surface-energy dependent contact activation
of blood factor XII, Biomaterials 31 (2010), 1068-1079.
[84]
H. Noh and E.A. Vogler, Volumetric interpretation of
protein adsorption: ion-exchange adsorbent capacity,
protein pI, and interaction energetics, Biomaterials 29
(2008), 2033-2048.
[99]
C. Roberts, C.S. Chen, M. Mrksich, V. Martichonok,
D.E. Ingber, and G.M. Whitesides, Using mixed self-
assembled monolayers presenting RGD and (EG)3OH
groups to characterize long-term attachment of bovine
[85]
C.-H.J. Yeh, Z.O. Dimachkie, A. Golas, A. Cheng, P.
Parhi, and E.A. Vogler, Contact activation of blood
Search WWH ::




Custom Search