Biomedical Engineering Reference
In-Depth Information
[130] J.A. Kluge, O. Rabotyagova, G.G. Leisk, and
D.L. Kaplan, Spider silks and their applications, Trends
Biotechnol 26 (2008), 244-251.
[131] A.T. Hillel, S. Unterman, Z. Nahas, B. Reid,
J.M. Coburn, J. Axelman, J.J. Chae, Q. Guo, R. Trow, A.
Thomas, Z. Hou, S. Lichtsteiner, D. Sutton,
C. Matheson, P. Walker, N. David, S. Mori, J.M. Taube,
and J.H. Elisseeff, Photoactivated composite biomate-
rial for soft tissue restoration in rodents and in humans,
Science Transl Med 93 (2011), 93ra67.
[132] J.M. Bouler, M. Trecant, J. Delecrin, J. Royer,
N. Passuti, and G. Daculsi, Macroporous biphasic
calcium phosphate ceramics: influence of five synthe-
sis parameters on compressive strength, J Biomed Mater
Res 32 (1996), 603-609.
[133] D.M. Liu, Fabrication of hydroxyapatite ceramic with
controlled porosity, J Mater Sci Mater Med 8 (1997),
227-232.
[134] S.H. Li, J.R. De Wijn, P. Layrolle, and K. de Groot,
Synthesis of macroporous hydroxyapatite scaffolds for
bone tissue engineering, J Biomed Mater Res 61 (2002),
109-120.
[135] X. Liu and P.X. Ma, Polymeric scaffolds for bone tissue
engineering, Ann Biomed Eng 32 (2004), 477-486.
[136] P.X. Ma, Biomimetic materials for tissue engineering,
Adv Drug Deliv Rev 60 (2008), 184-198.
[137] T. Dvir, B.P. Timko, D.S. Kohane, and R. Langer, Nano-
technological strategies for engineering complex
tissues, Nat Nanotechnol 6 (2011), 13-22.
[138] H. Shin, S. Jo, and A.G. Mikos, Biomimetic materials for
tissue engineering, Biomaterials 24 (2003), 4353-4364.
[139] H.L. Holtorf, J.A. Jansen, and A.G. Mikos, Modulation
of cell differentiation in bone tissue engineering con-
structs cultured in a bioreactor, Adv Exp Med Biol 585
(2006), 225-241.
[140] Y. Hu, S.R. Winn, I. Krajbich, and J.O. Hollinger,
Porous polymer scaffolds surface-modified with argi-
nine-glycine-aspartic acid enhance bone cell attach-
ment and differentiation in vitro, J Biomed Mater Res A
64 (2003), 583-590.
[141] J.M. Curran, Z. Tang, and J.A. Hunt, PLGA doping of
PCL affects the plastic potential of human mesenchy-
mal stem cells, both in the presence and absence of
biological stimuli, J Biomed Mater Res A 89 (2009),
1-12.
[142] S.R. Chastain, A.K. Kundu, S. Dhar, J.W. Calvert, and
A.J. Putnam, Adhesion of mesenchymal stem cells to
polymer scaffolds occurs via distinct ECM ligands and
controls their osteogenic differentiation, J Biomed
Mater Res A 78 (2006), 73-85.
[143] R.A. Marklein and J.A. Burdick, Controlling stem cell
fate with material design, Adv Mater 22 (2010), 175-189.
[144] Y.P. Jiao and F.Z. Cui, Surface modification of polyester
biomaterials for tissue engineering, Biomed Mater 2
(2007), R24-R37.
[145] R.S. Bhati, D.P. Mukherjee, K.J. McCarthy, S.H. Rogers,
D.F. Smith, and S.W. Shalaby, The growth of chondro-
cytes into a fibronectin-coated biodegradable scaffold,
J Biomed Mater Res 56 (2001), 74-82.
[146] J.E. Leslie-Barbick, J.E. Saik, D.J. Gould, M.E. Dickin-
son, and J.L. West, The promotion of microvasculature
formation in poly(ethylene glycol) diacrylate hydro-
gels by an immobilized VEGF-mimetic peptide, Bioma-
terials 32 (2011), 5782-5789.
[147] U. Hersel, C. Dahmen, and H. Kessler, RGD modified
polymers: biomaterials for stimulated cell adhesion
and beyond, Biomaterials 24 (2003), 4385-4415.
[148] R. Langer, Drug delivery and targeting, Nature 392
(1998), 5-10.
[149] X. Wang, E. Wenk, X. Zhang, L. Meinel, G. Vunjak-
Novakovic, and D.L. Kaplan, Growth factor gradients
via microsphere delivery in biopolymer scaffolds for
osteochondral tissue engineering, J Control Release 134
(2009), 81-90.
[150] K. Ladewig, Drug delivery in soft tissue engineering.
Expert Opin Drug Deliv 8 (2011), 1175-1188.
[151] G. Wei, Q. Jin, W.V. Giannobile, and P.X. Ma, The
enhancement of osteogenesis by nano-fibrous scaf-
folds incorporating rhBMP-7 nanospheres, Biomateri-
als 28 (2007), 2087-2096.
[152] D.P. Go, S.L. Gras, D. Mitra, T.H. Nguyen, G.W.
Stevens, J.J. Cooper-White, and A.J. O'Connor, Multi-
layered microspheres for the controlled release of
growth factors in tissue engineering, Biomacromolecules
12 (2011), 1494-1503.
[153] X. Shi, Y. Wang, R.R. Varshney, L. Ren, Y. Gong, and
D.A. Wang, Microsphere-based drug releasing scaffolds
for inducing osteogenesis of human mesenchymal stem
cells in vitro, Eur J Pharm Sci 39 (2010), 59-67.
[154] J. Bonadio, E. Smiley, P. Patil, and S. Goldstein, Local-
ized direct plasmid gene delivery in vivo: prolonged
therapy results in reproducible tissue regeneration,
Nat Med 5 (1999), 753-759.
[155] D.D. Hile, M.L. Amirpour, A. Akgerman, M.V. Pishko,
and Active growth factor delivery from poly(d, l-lac-
tide- co -glycolide) foams prepared in supercritical
CO(2), J Control Release 66 (2000), 177-185.
[156] C.J. Bettinger, R. Langer, and J.T. Borenstein, Engineer-
ing substrate topography at the micro- and nanoscale
to control cell function, Angew Chem Int Ed 48 (2009),
5406-5415.
[157] S.C. Owen and M.S. Shoichet, Design of three-dimen-
sional biomimetic scaffolds, J Biomed Mater Res A 94
(2010), 1321-1331.
Search WWH ::




Custom Search