Biomedical Engineering Reference
In-Depth Information
and biological properties, J Biomed Nanotechnol 1
(2005), 151-160.
[74] S.J. Hollister, Porous scaffold design for tissue engi-
neering, Nat Mater 4 (2005), 518-524.
[75] L.R. Madden, D.J. Mortisen, E.M. Sussman,
S.K. Dupras, J.A. Fugate, J.L. Cuy, K.D. Hauch,
M.A. Laflamme, C.E. Murry, and B.D. Ratner, Proan-
giogenic scaffolds as functional templates for cardiac
tissue engineering, Proc Natl Acad Sci 107 (2010),
15211-15216.
[76] T. Osathanon, M.L. Linnes, R.M. Rajachar, B.D. Ratner,
M.J. Somerman, and C.M. Giachelli, Microporous
nanofibrous fibrin-based scaffolds for bone tissue
engineering, Biomaterials 29 (2008), 4091-4099.
[77] J. Chen, J. Xu, A. Wang, and M. Zheng, Scaffolds for
tendon and ligament repair: review of the efficacy of
commercial products, Exp Rev Med Dev 6 (2009),
61-73.
[78] U.G. Longo, A. Lamberti, N. Maffulli, and V. Denaro,
Tendon augmentation grafts: a systematic review, Brit
Med Bull 94 (2010), 165-188.
[79] F. Dehghani and N. Annabi, Engineering porous scaf-
folds using gas-based techniques, Curr Opin Biotechnol
22 (2011), 661-666.
[80] X. Liu, Y. Won, and P.X. Ma, Porogen-induced surface
modification of nano-fibrous poly(L-lactic acid) scaf-
folds for tissue engineering, Biomaterials 27 (2006),
3980-3987.
[81] J. Reignier and M.A. Huneault, Preparation of inter-
connected poly(epsilon-caprolactone) porous scaf-
folds by a combination of polymer and salt particulate
leaching, Polymer 47 (2006), 4703-4717.
[82] K. Chatterjee, A.M. Kraigsley, D. Bolikal, J. Kohn, and
C.G. Simon, Jr., Gas-foamed scaffold gradients for
combinatorial screening in 3D, J Funct Biomater 3
(2012), 173-182.
[83] E. Sachlos and J.T. Czernuszka, Making tissue engi-
neering scaffolds work. Review: the application of
solid freeform fabrication technology to the produc-
tion of tissue engineering scaffolds, Eur Cell Mater 5
(2003), 29-39 discussion 39-40
[84] M.E. Hoque, Y.L. Chuan, and I. Pashby, Extrusion
based rapid prototyping technique: an advanced plat-
form for tissue engineering scaffold fabrication, Biopol-
ymers 97 (2012), 83-93.
[85] A. Gloria, T. Russo, R. De Santis, and L. Ambrosio, 3D
fiber deposition technique to make multifunctional
and tailor-made scaffolds for tissue engineering
applications,
[87] N. Bhattarai, J. Gunn, and M. Zhang, Chitosan-based
hydrogels for controlled, localized drug delivery, Adv
Drug Deliv Rev 62 (2010), 83-99.
[88] D.W. Pack, A.S. Hoffman, S. Pun, and P.S. Stayton,
Design and development of polymers for gene deliv-
ery, Nat Rev Drug Discov 4 (2005), 581-593.
[89] K.Y. Lee and D.J. Mooney, Hydrogels for tissue engi-
neering, Chem Rev 101 (2001), 1869-1879.
[90] N.A. Peppas, J.Z. Hilt, A. Khademhosseini, and
R. Langer, Hydrogels in biology and medicine: From
molecular principles to bionanotechnology, Adv Mater
18 (2006), 1345-1360.
[91] R.A. Barry, R.F. Shepherd, J.N. Hanson, R.G. Nuzzo,
P. Wiltzius, and J.A. Lewis, Direct-write assembly of
3D hydrogel scaffolds for guided cell growth, Adv
Mater 21 (2009), 2407-2410.
[92] N.E. Fedorovich, J. Alblas, J.R. de Wijn, W.E. Hennink,
A.J. Verbout, and W.J. Dhert, Hydrogels as extracel-
lular matrices for skeletal tissue engineering: state-of-
the-art and novel application in organ printing, Tissue
Eng 13 (2007), 1905-1925.
[93] M.C. Roco, C.A. Mirkin, and M.C. Hersam (eds.),
Nanotechnology research directions for societal needs in
2020 , Springer-Verlag, New York, NY, USA (2011).
[94] D.H. Reneker, A.L. Yarin, H. Fong, and S. Koomb-
hongse, Bending instability of electrically charged
liquid jets of polymer solutions in electrospinning, J
Appl Phys 87 (2000), 4531-4547.
[95] A.F. Spivak, Y.A. Dzenis, and D.H. Reneker, A model
of steady state jet in the electrospinning process, Mech
Res Commun 27 (2000), 37-42.
[96] G. Srinivasan and D.H. Reneker, Structure and mor-
phology of small-diameter electrospun aramid fibers,
Polym Int 36 (1995), 195-201.
[97] A. Greiner and J.H. Wendorff, Electrospinning: A fas-
cinating method for the preparation of ultrathin fibres,
Angew Chem Int Ed 46 (2007), 5670-5703.
[98] K. Jayaraman, M. Kotaki, Y. Zhang, X. Mo, and S.
Ramakrishna, Recent advances in polymer nanofibers,
J Nanosci Nanotechnol 4 (2004), 52-65.
[99] Z.M. Huang, Y.Z. Zhang, M. Kotaki, and S. Ram-
akrishna, A review on polymer nanofibers by electro-
spinning and their applications in nanocomposites,
Compos Sci Technol 63 (2003), 2223-2253.
[100] V. Leung and F. Ko, Biomedical applications of
nanofibers, Polym Adv Technol 22 (2011), 350-365.
[101] Z. Ma, M. Kotaki, R. Inai, and S. Ramakrishna, Poten-
tial of Nanofiber Matrix as Tissue-Engineering Scaf-
folds, Tissue Eng 11 (2005), 101-109.
[102] G.C. Rutledge and S.V. Fridrikh, Formation of fibers by
electrospinning, Adv Drug Deliv Rev 59 (2007), 1384-1391.
[103] A. Cooper, N. Bhattarai, and M. Zhang, Fabrication
and cellular compatibility of aligned chitosan-PCL
fibers for nerve tissue regeneration, Carbohydr Polym
85 (2011), 149-156.
J Appl Biomater Biomech
7 (2009),
141-152.
[86] J.W. Lee, P.X. Lan, B. Kim, G. Lim, and D.W. Cho,
Fabrication and characteristic analysis of a
poly(propylene fumarate) scaffold using micro-stere-
olithography technology, J Biomed Mater Res B 87
(2008), 1-9.
Search WWH ::




Custom Search