Biomedical Engineering Reference
In-Depth Information
[45] M.A. Pattison, S. Wurster, T.J. Webster, and K.M.
Haberstroh, Three-dimensional nano-structured
PLGA scaffolds for bladder tissue replacement appli-
cations, Biomaterials 26 (2005), 2491-2500.
[46] M. Kjaer, Role of extracellular matrix in adaptation of
tendon and skeletal muscle to mechanical loading,
Physiol Rev 84 (2004), 649-698.
[47] J.P. Arokoski, J.S. Jurvelin, U. Vaatainen, and H.J.
Helminen, Normal and pathological adaptations of
articular cartilage to joint loading, Scand J Med Sci
Sports 10 (2000), 186-198.
[48] S. Mathews, R. Bhonde, P.K. Gupta, and S. Totey, Extra-
cellular matrix protein mediated regulation of the osteo-
blast differentiation of bone marrow derived human
mesenchymal stem cells, Differentiation
[60] D. Li and Y.N. Xia, Electrospinning of nanofibers:
Reinventing the wheel? Adv Mater
16 (2004),
1151-1170.
[61] D.H. Reneker and I. Chun, Nanometre diameter fibres
of polymer, produced by electrospinning, Nanotechnol-
ogy 7 (1996), 216-223.
[62] F. Ko, Nanofiber technology, in Nanomaterials Handbook
(Y. Gogotsi, ed.), CRC Press, Boca Raton, FL, USA
(2006), 553-565.
[63] Y. Loo, S. Zhang, and C.A. Hauser, From short pep-
tides to nanofibers to macromolecular assemblies in
biomedicine, Biotechnol Adv 30 (2012), 593-603.
[64] J.Y. Lee, J.E. Choo, Y.S. Choi, J.S. Suh, S.J. Lee,
C.P. Chung, and Y.J. Park, Osteoblastic differentiation
of human bone marrow stromal cells in self-assembled
BMP-2 receptor-binding peptide-amphiphiles, Bioma-
terials 30 (2009), 3532-3541.
[65] J.B. Matson, R.H. Zha, and S.I. Stupp, Peptide self-
assembly for crafting functional biological materi-
als, Curr Opin Solid State Mater Sci 15 (2011),
225-235.
[66] K.G. Cornwell, A. Landsman, and K.S. James, Extra-
cellular matrix biomaterials for soft tissue repair, Clin
Podiatr Med Surg 26 (2009), 507-523.
[67] S. Badylak, S. Arnoczky, P. Plouhar, R. Haut, V.
Mendenhall, R. Clarke, and C. Horvath, Naturally
occurring extracellular matrix as a scaffold for muscu-
loskeletal repair, Clin Orthop Relat Res (1999),
S333-S343.
[68] L. Zhao, M.D. Weir, and H.H. Xu, An injectable calcium
phosphate-alginate hydrogel-umbilical cord mesen-
chymal stem cell paste for bone tissue engineering,
Biomaterials 31 (2010), 6502-6510.
[69] R. Hartwell, V. Leung, C. Chavez-Munoz, L. Nabai,
H. Yang, F. Ko, and A. Ghahary, A novel hydrogel-
collagen composite improves functionality of an
injectable extracellular matrix, Acta Biomater 7 (2011),
3060-3069.
[70] J.P. Levine, J. Bradley, A.E. Turk, J.L. Ricci, J.J. Benedict,
G. Steiner, M.T. Longaker, and J.G. McCarthy, Bone
morphogenetic protein promotes vascularization and
osteoinduction in preformed hydroxyapatite in the
rabbit, Ann Plast Surg 39 (1997), 158-168.
[71] C.H. Hammerle, A.J. Olah, J. Schmid, L. Fluckiger, S.
Gogolewski, J.R. Winkler, and N.P. Lang, The biologi-
cal effect of natural bone mineral on bone neoforma-
tion on the rabbit skull, Clin Oral Implants Res 8 (1997),
198-207.
[72] T.M. Chu, D.G. Orton, S.J. Hollister, S.E. Feinberg, and
J.W. Halloran, Mechanical and in vivo performance of
hydroxyapatite implants with controlled architec-
tures, Biomaterials 23 (2002), 1283-1293.
[73] H.R. Ramay, Z. Li, E. Shum, and M. Zhang, Chitosan-
alginate porous scaffolds reinforced by hydroxyapa-
tite nano- and micro-particles: structural mechanical
84 (2012),
185-192.
[49] W.L. Murphy, R.G. Dennis, J.L. Kileny, and D.J.
Mooney, Salt fusion: An approach to improve pore
interconnectivity within tissue engineering scaffolds,
Tissue Eng 8 (2002), 43-52.
[50] H.J. Chung and T.G. Park, Surface engineered and
drug releasing pre-fabricated scaffolds for tissue engi-
neering, Adv Drug Deliv Rev 59 (2007), 249-262.
[51] J. Reignier and M. Huneault, Preparation of intercon-
nected poly( ε -caprolactone) porous scaffolds by a
combination of polymer and salt particulate leaching,
Polymer 47 (2006), 4703-4717.
[52] Y. Huang and D.J. Mooney, Gas foaming to fabricate
polymer scaffolds in tissue engineering, in Scaffolding
in Tissue Engineering (P.X. Ma and J. Elisseeff, eds.),
CRC Press, Boca Raton, FL, USA (2005), 155-165.
[53] L.D. Harris, B.S. Kim, and D.J. Mooney, Open pore
biodegradable matrices formed with gas foaming,
J Biomed Mater Res 42 (1998), 396-402.
[54] B.S. Kim and D.J. Mooney, Engineering smooth muscle
tissue with a predefined structure, J Biomed Mater Res
41 (1998), 322-332.
[55] A.G. Mikos, Y. Bao, L.G. Cima, D.E. Ingber, J.P. Vacanti,
and R. Langer, Preparation of poly(glycolic acid)
bonded fiber structures for cell attachment and trans-
plantation, J Biomed Mater Res 27 (1993), 183-189.
[56] W.Y. Yeong, C.K. Chua, K.F. Leong, and M. Chan-
drasekaran, Rapid prototyping in tissue engineering:
challenges and potential, Trends Biotechnol 22 (2004),
643-652.
[57] S.M. Peltola, F.P. Melchels, D.W. Grijpma, and
M. Kellomaki, A review of rapid prototyping tech-
niques for tissue engineering purposes, Ann Med 40
(2008), 268-280.
[58] B.V. Slaughter, S.S. Khurshid, O.Z. Fisher, A. Khadem-
hosseini, and N.A. Peppas, Hydrogels in regenerative
medicine, Adv Mater 21 (2009), 3307-3329.
[59] J.L. Drury and D.J. Mooney, Hydrogels for tissue engi-
neering: scaffold design variables and applications,
Biomaterials 24 (2003), 4337-4351.
Search WWH ::




Custom Search