Biomedical Engineering Reference
In-Depth Information
[15] S.C. Owen and M.S. Shoichet, Design of three-dimen-
sional biomimetic scaffolds, J Biomed Mater Res A 94
(2010), 1321-1331.
[16] J.J. Mercuri, S.S. Gill, and D.T. Simionescu, Novel tis-
sue-derived biomimetic scaffold for regenerating the
human nucleus pulposus, J Biomed Mater Res A 96
(2011), 422-435.
[17] G. Kumar, C.K. Tison, K. Chatterjee, P.S. Pine,
J.H. McDaniel, M.L. Salit, M.F. Young, and C.G. Simon,
Jr , The determination of stem cell fate by 3D scaffold
structures through the control of cell shape, Biomaterials
32 (2011), 9188-9196.
[18] S. Panseri, C. Cunha, J. Lowery, U. Del Carro,
F. Taraballi, S. Amadio, A. Vescovi, and F. Gelain, Elec-
trospun micro- and nanofiber tubes for functional
nervous regeneration in sciatic nerve transections,
BMC Biotechnol 8 (2008), 39.
[19] P. Gunatillake, R. Mayadunne, and R. Adhikari, Recent
developments in biodegradable synthetic polymers,
Biotechnol Annu Rev 12 (2006), 301-347.
[20] X. Liu, J.M. Holzwarth, and P.X. Ma, Functionalized
synthetic biodegradable polymer scaffolds for tissue
engineering, Macromol Biosci 12 (2012), 911-919.
[21] J.P. Bruggeman, B.J. de Bruin, C.J. Bettinger, and
R. Langer, Biodegradable poly(polyol sebacate) poly-
mers, Biomaterials 29 (2008), 4726-4735.
[22] C.A. Vacanti, J.P. Vacanti, and R. Langer, Tissue engi-
neering using synthetic biodegradable polymers,
Polym Biol Biomed Sig 540 (1994), 16-34.
[23] K. Rezwan, Q.Z. Chen, J.J. Blaker, and A.R. Boccaccini,
Biodegradable and bioactive porous polymer/inor-
ganic composite scaffolds for bone tissue engineering,
Biomaterials 27 (2006), 3413-3431.
[24] V. Guarino, F. Causa, and L. Ambrosio, Bioactive scaf-
folds for bone and ligament tissue, Expert Rev Med Dev
4 (2007), 405-418.
[25] Q. Lv, L. Nair, and C.T. Laurencin, Fabrication, charac-
terization, and in vitro evaluation of poly(lactic acid
glycolic acid)/nano-hydroxyapatite composite micro-
sphere-based scaffolds for bone tissue engineering in
rotating bioreactors, J Biomed Mater Res A 91 (2009),
679-691.
[26] I.O. Smith, X.H. Liu, L.A. Smith, and P.X. Ma, Nano-
structured polymer scaffolds for tissue engineering
and regenerative medicine, Wiley Interdiscip Rev
Nanomed Nanobiotechnol 1 (2009), 226-236.
[27] J.K. Suh and H.W. Matthew, Application of chitosan-
based polysaccharide biomaterials in cartilage tissue
engineering: a review, Biomaterials
nate complexes modified by an RGD-containing
protein as tissue-engineering scaffolds for cartilage
regeneration, Artif Organs 28 (2004), 693-703.
[30] R. Langer and D.A. Tirrell, Designing materials for
biology and medicine, Nature 428 (2004), 487-492.
[31] M.N. Kumar, R.A. Muzzarelli, C. Muzzarelli, H.
Sashiwa, and A.J. Domb, Chitosan chemistry and
pharmaceutical perspectives, Chem Rev 104 (2004),
6017-6084.
[32] B.S. Kim and D.J. Mooney, Development of biocom-
patible synthetic extracellular matrices for tissue engi-
neering, Trends Biotechnol 16 (1998), 224-230.
[33] E.S. Place, J.H. George, C.K. Williams, and
M.M. Stevens, Synthetic polymer scaffolds for tissue
engineering, Chem Soc Rev 38 (2009), 1139-1151.
[34] C.Y. Wang, K.H. Zhang, C.Y. Fan, X.M. Mo, H.J. Ruan,
and F.F. Li, Aligned natural-synthetic polyblend
nanofibers for peripheral nerve regeneration, Acta Bio-
mater 7 (2011), 634-643.
[35] N. Bhattarai, Z. Li, J. Gunn, M. Leung, A. Cooper, D.
Edmondson, O. Veiseh, M.-H. Chen, Y. Zhang, R.G.
Ellenbogen, and M. Zhang, Natural-synthetic poly-
blend nanofibers for biomedical applications, Adv
Mater 21 (2009), 2792-2797.
[36] G. Chan and D.J. Mooney, New materials for tissue
engineering: towards greater control over the biologi-
cal response, Trends Biotechnol 26 (2008), 382-392.
[37] R. Vasita and D.S. Katti, Nanofibers and their applica-
tions in tissue engineering, Int J Nanomed 1 (2006),
15-30.
[38] E.K. Yim and K.W. Leong, Significance of synthetic
nanostructures in dictating cellular response, Nano-
medicine 1 (2005), 10-21.
[39] D.M. Le, K. Kulangara, A.F. Adler, K.W. Leong, and V.S.
Ashby, Dynamic topographical control of mesenchymal
stem cells by culture on responsive poly(epsilon-caprol-
actone) surfaces, Adv Mater 23 (2011), 3278-3283.
[40] S.H. Lim and H.Q. Mao, Electrospun scaffolds for stem
cell engineering, Adv Drug Deliv Rev 61 (2009),
1084-1096.
[41] R.G. Flemming, C.J. Murphy, G.A. Abrams, S.L.
Goodman, and P.F. Nealey, Effects of synthetic micro-
and nano-structured surfaces on cell behavior, Bioma-
terials 20 (1999), 573-588.
[42] L. Nivison-Smith and A.S. Weiss, Alignment of human
vascular smooth muscle cells on parallel electrospun
synthetic elastin fibers, J Biomed Mater Res A 100 (2012),
155-161.
[43] J.M. Holzwarth and P.X. Ma, Biomimetic nanofibrous
scaffolds for bone tissue engineering, Biomaterials 32
(2011), 9622-9629.
[44] N. Tran and T.J. Webster, Nanotechnology for bone
materials, Wiley Interdiscip Rev Nanomed Nanobiotechnol
1 (2009), 336-351.
21 (2000),
2589-2598.
[28] X. Zhang, M.R. Reagan, and D.L. Kaplan, Electrospun
silk biomaterial scaffolds for regenerative medicine,
Adv Drug Deliv Rev 61 (2009), 988-1006.
[29] S.H. Hsu, S.W. Whu, S.C. Hsieh, C.L. Tsai, D.C. Chen,
and T.S. Tan, Evaluation of chitosan-alginate-hyaluro-
Search WWH ::




Custom Search