Biomedical Engineering Reference
In-Depth Information
References
[1] J. Bobet and R.B. Stein, A simple model of force gen-
eration by skeletal muscle during dynamic isometric
contractions,
[18] T. Hirai, J. Zheng, and M. Watanabe, Solvent-drag
bending motion of polymer gel induced by an electric
field, Proc SPIE 3669 (1999), 209-217.
[19] M. Shahinpoor, Y. Bar-Cohen, J. Simpson, and J. Smith,
Ionic polymer-metal composite (IPMCs) as biomimetic
sensors, actuators and artificial muscles: a review,
Smart Mater Struct 7 (1998), R15-R30.
[20] K. Oguro, K. Asaka, and H. Takenaka, Polymer film
actuator driven by low voltage, Proceedings of the 4th
international symposium on micro machine and human
science , Nagoya, Japan (1993), 39-40.
[21] M. Shahinpoor, Conceptual design, kinematics and
dynamics of swimming robotic structures using active
polymer gels, Proceedings of the ADPA/AIAA/ASME/
SPIE conference on active materials & adaptive structures,
Alexandria, VA, USA (November 1991).
[22] M. Shahinpoor, Conceptual design, kinematics and
dynamics of swimming robotic structures using ionic
polymeric gel muscles, Smart Mater Struct 1 (1992),
91-94.
[23] T.F. Otero and J.M. Sansinena, Artificial muscles based
on conducting polymers, Bioelectrochem Bioenerg 38
(1995), 411-414.
[24] M. Behl, R. Langer, and A. Lendlein, Intelligent materi-
als: shape-memory polymers, in Intelligent Materials
(M. Shahinpoor and H.-J. Schneider, eds.), Royal
Society of Chemistry, Cambridge, UK (2008), 301-314.
[25] M. Shahinpoor, K.J. Kim, and M. Mojarrad, Artiicial
muscles: applications of advanced polymeric nano compos-
ites , CRC Press, Boca Raton, FL, USA (2007).
[26] M. Shahinpoor and K.J. Kim, Ionic polymer-metal com-
posites - I. Fundamentals, Smart Mater Struct 10 (2001),
819-833.
[27] K.J. Kim and M. Shahinpoor, Ionic polymer-metal com-
posites - II. Manufacturing techniques, Smart Mater
Struct 12 (2003), 65-79.
[28] M. Shahinpoor and K.J. Kim, Ionic polymer-metal com-
posites - III. Modeling and simulation as biomimetic
sensors, actuators, transducers and artificial muscles,
Smart Mater Struct 13 (2004), 1362-1388.
[29] M. Shahinpoor and K.J. Kim, Ionic polymer-metal com-
posites - IV. Industrial and medical applications, Smart
Mater Struct 14 (2005), 197-214.
[30] M. Shahinpoor and H.-J. Schneider, Intelligent Materials ,
Royal Society of Chemistry, Cambridge, UK (2008).
[31] A.F.T. Mak and S. Sun, Intelligent Chitosan-based
hydrogels as multifunctional materials, in Intelligent
Materials (M. Shahinpoor and H.-J. Schneider, eds.),
Royal Society of Chemistry, Cambridge, UK (2008),
447-461.
[32] M. Shahinpoor, Ionic polymer-conductor composites as
biomimetic sensors, robotic actuators and artificial
muscles-a review, Electrochim Acta
IEEE Trans Biomed Eng
45 (1998),
1010-1016.
[2] J. Ding, A.S. Wexler, and S.A. Binder-Macleod, A math-
ematical model that predicts the force-frequency rela-
tionship of human skeletal muscle, Muscle Nerve 26
(2002), 477-485.
[3] J. Ding, A.S. Wexler, and S.A. Binder-Macleod, Devel-
opment of a mathematical model that predicts optimal
muscle activation patterns by using brief trains, J Appl
Physiol 88 (2000), 917-925.
[4] Y. Bar-Cohen (ed.), Electroactive polymer (EAP) actuators
as artificial muscles: reality, potential and challenges , SPIE
Press, Bellingham, WA, USA (2001).
[5] M. Zrinyi, D. Szabo, and J. Feher, Comparative studies
of electro- and magnetic field sensitive polymer gels,
Proc SPIE 3669 (1999), 406-413.
[6] Q.M. Zhang, V. Bharti, and X. Zhao, Giant electrostriction
and relaxor ferroelectric behavior in electron-irradiated
poly(vinylidene fluoride-trifluorethylene) copolymer,
Science 280 (1998), 2101-2104.
[7] M. Eguchi, Piezoelectric polymers, Phil Mag 49 (1925),
178-192.
[8] G.M. Sessler and J. Hillenbrand, Novel polymer elec-
trets, MRS Symp Proc 600 (1999), 143-158.
[9] R. Pelrine, R. Kornbluh, Q. Pei, and J. Joseph, High
speed electrically actuated elastomers with strain
greater than 100%, Science 287 (2000), 836-839.
[10] W.C. Roentgen, About the changes in shape and
volume of dielectrics caused by electricity, Ann Phys
Chem 11 (1880), 771-786.
[11] H. Finkelmann and H.R. Brand, Liquid crystalline elas-
tomers: a class of materials with novel properties,
Trends Polym Sci 2 (1994), 222-226.
[12] H. Finkelmann and M. Shahinpoor, Electrically-con-
trollable liquid crystal elastomer-graphite composites
artificial muscles, Proc SPIE 4695 (2002), 459-464.
[13] Y. Osada, H. Okuzaki, and H. Hori, A polymer gel with
electrically driven motility, Nature 355 (1992), 242-244.
[14] Y. Osada and S.B. Ross-Murphy, Intelligent gels, Sci Am
268 (5) (May 1993), 82-87.
[15] Y. Osada, H. Okuzaki, J.P. Gong, and T. Nitta, Electro-
driven gel motility on the base of cooperative molecu-
lar assembly reaction, Polym Sci 36 (1994), 340-351.
[16] Y. Osada and A. Matsuda, Shape memory in hydrogels,
Nature 376 (1995), 219.
[17] M. Hirai, T. Hirai, A. Sukumoda, H. Nemoto, Y.
Amemiya, K. Kobayashi, and T. Ueki, Electrically
induced reversible structural change of a highly swollen
polymer gel network, J Chem Soc Faraday Trans 91 (1995),
473-477.
48 (2003),
2343-2353.
Search WWH ::




Custom Search