Biomedical Engineering Reference
In-Depth Information
[42] J.M. Martins, Z. Mohamed, M.O. Tokhi, J. Sa da Costa,
and M.A. Botto, Approaches for dynamic modelling of
flexible manipulator systems, IEE Proc Control Theory
Appl 150 (2003), 401-411.
[43] B.C. Bouzgarrou, P. Ray, and G. Gogu, New approach for
dynamic modelling of flexible manipulators, Proc Inst
Mech Eng, Part K: J Multi-body Dyn 219 (2005), 285-298.
[44] M.M. Fateh, Dynamic modeling of robot manipulators
in D-H frames, World Appl Sci J 6 (2009), 39-44.
[45] E. Garcia and D.J. Inman, Advantages of slewing an active
structure, J Intell Mater Syst Struct 1 (1991), 261-272.
[46] M.K. Kwak, K.K. Denoyer, and D. Sciulli, Dynamics
and control of slewing active beam, J Guid Contr Dyn
18 (1994), 185-189.
[47] Q. Sun, Control of flexible-link multiple manipulators,
ASME J Dyn Syst Meas Contr 124 (2002), 67-76.
[48] Z. Wang, H. Zeng, D.W.C. Ho, and H. Unbehauen,
Multi-objective control of a four-link flexible manipula-
tor: a robust H approach, IEEE Trans Control Syst
Technol 10 (2002), 866-875.
[49] A. Fenili, J.M. Balthazar, and R.M.L.R.F. Brasil, On the
mathematical modeling of beam-like flexible structure
in slewing motion assuming nonlinear curvature, J
Sound Vib 282 (2004), 543-552.
[50] A.E. Bryson and Y.-C. Ho, Applied optimal control , Hemi-
sphere, New York, NY, USA (1975).
[51] R. Bellman, The theory of dynamic programming, Proc
Natl Acad Sci 38 (1952), 360-385.
[52] R. Bellman, Dynamic programming , Dover Publications,
New York, NY, USA (2003).
[53] J.A. Primbs, Nonlinear optimal control: a receding horizon
approach , Ph.D. dissertation, California Institute of
Technology (1999).
[54] J.A. Primbs, V. Nevistić, and J.C. Doyle, Nonlinear
optimal control: a control Lyapunov function and reced-
ing horizon perspective, Asian J Control 1 (1999), 14-24.
[55] J.R. Cloutier, C.N. D'Souza, and C.P. Mracek. Nonlinear
regulation and nonlinear H control via the state-
dependent Riccati equation technique, Proceedings of the
1st international conference on nonlinear problems in avia-
tion and aerospace , Daytona Beach, FL, USA (1996).
[56] J. Vlassenbroeck and R. Van Dooren, A Chebyshev tech-
nique for solving nonlinear optimal control problems,
IEEE Trans Autom Control 33 (1988), 333-340.
[57] D. Georges, C.C. de Wit, and J. Ramirez, Nonlinear H 2
and H optimal controllers for current-fed induction
motors, IEEE Trans Autom Control 44 (1999), 1430-1435.
[58] P.A. Frick and D.J. Stech, Solution of the optimal control
problems on parallel machine using epsilon method,
Optim Control Appl Methods 16 (1995), 1-17.
[59] H. Jaddu and E. Shimemura, Computation of optimal
control trajectories using Chebyshev polynomials: par-
ametrization and quadratic programming, Optim
Control Appl Methods 20 (1999), 21-42.
[60] J. Tamimi and H. Jaddu, Nonlinear optimal controller
of three-phase induction motor using quasi-lineariza-
tion, Proceedings of the second international symposium on
communications, control and signal processing , Marrakech,
Morocco (March 13-15, 2006).
[61] A.J. van der Schaft, L 2 -gain analysis of nonlinear
systems and nonlinear state feedback H control, IEEE
Trans Autom Control 37 (1992), 770-784.
[62] A.J. van der Schaft, L 2- gain and passivity techniques in
nonlinear control , Springer-Verlag, Berlin, Germany
(1996).
[63] J.B. Burl, Linear optimal control: H 2 and H methods,
Addison Wesley Longman, Reading, MA, USA (1999).
[64] R.B. Brown and P.Y.C. Hwang, Introduction to random
signals and applied Kalman filtering, , 3rd ed., Wiley, New
York, NY, USA (1997).
[65] S.J. Julier and J. Uhlmann, Unscented filtering and non-
linear estimation, Proc IEEE 92 (2000), 401-422.
[66] S.J. Julier, J. Uhlmann, and H.F. Durrant-Whyte, A new
method for the nonlinear transformation of means and
covariances in filters and estimators, IEEE Trans Autom
Control 45 (2000), 477-482.
[67] S.J. Julier, The scaled unscented transformation, Proceed-
ings of the American control conference , vol. 6 (2002),
4555-4559.
[68] F.C. Moon, Chaotic vibrations , Wiley, New York, NY,
USA (1987).
[69] A.H. Nayfeh, D.T. Mook, and S. Sridhar, Nonlinear
analysis of the forced response of structural elements,
J Acoust Soc Am 55 (1974), 281-291.
[70] A.H. Nayfeh and D.T. Mook, Nonlinear oscillations ,
Wiley, New York, NY, USA (1979).
[71] K. Glover and J.C. Doyle, State space formulae for all
stabilizing controllers that satisfy an H -norm bound
and relations to risk sensitivity, Syst Control Lett 11
(1988), 167-172.
[72] J.C. Doyle, K. Glover, P.P. Khargonekar, and B. Francis,
State-space solutions to the standard H 2 and H control
problems, IEEE Trans Autom Control 34 (1989), 831-847.
[73] P. Gahinet and P. Apkarian, A linear matrix inequality
approach to H control, Int J Robust Nonlinear Control 4
(1994), 421-448.
[74] P.P. Khargonekar and M.A. Rotea, Mixed H 2 / H
control: a convex optimization approach, IEEE Trans
Autom Control 36 (1991), 824-837.
[75] K. Zhou, J.C. Doyle, and K. Glover, Robust and optimal
control , Prentice-Hall, Upper Saddle River, NJ, USA
(1995).
[76] F.E. Zajac, Muscle and tendon: properties, models,
scaling and application to biomechanics and motor
control, CRC Crit Rev Biomed Eng 17 (1989), 359-411.
[77] D. Song, G. Raphael, N. Lan, and G.E. Loeb, Computa-
tionally efficient models of neuromuscular recruitment
and mechanics, J Neural Eng 5 (2008), 175-184.
Search WWH ::




Custom Search