Agriculture Reference
In-Depth Information
Abel S, Tocconi CA, Delatorre CA (2002) Phosphate sensing in
higher plants. Physiol Plant 115: 1-8.
Achard P, Herr A, Baulcombe DC, Harberd NP (2004)
Modulation of floral development by a gibberellins-regulated
microRNA. Development 13: 3357-3365.
Allen RS, Millgate AG, Chitty JA, et al . (2004) RNAi-mediated
replacement of morphine with the nonnarcotic alkaloid reti-
culine in opium poppy. Nat Biotechnol 22: 1559-1566.
Alves L Jr, Niemeier S, Hauenschild A, Rehsmeier M, Merkle T
(2009) Comprehensive prediction of novel microRNA targets
in Arabidopsis thaliana . Nucleic Acids Res 37: 4010-4021.
Arenas-Huertero C, PĂ©rez B, Rabanal F, et al . (2009) Conserved
and novel miRNAs in the legume Phaseolus vulgaris in
response to stress. Plant Mol Biol 70: 385-401.
Aung K, Lin SI, Wu CC, Huang YT, Su CL, Chiou TJ (2006)
pho2, a phosphate over accumulator, is caused by a nonsense
mutation in a microRNA399 target gene. Plant Physiol 141:
1000-1011.
Barakat A, Siram A, Park J, Zhebentyayeva T, Main D, Abbott A
(2012) Genome-wide identification of chilling responsive
microRNAs in Prunus persica . BMC Genomics 13: 481.
Bari R, Pant B, Stitt M, Scheible WR (2006) microRNA399 and
PHR1 define a phosphate-signalling pathway in plants. Plant
Physiol 141: 988-999.
Barker D, Bianchi S, Blondon F, et al . (1990) Medicago truncatula :
a model plant for studying the molecular genetics of the rhi-
zobium-legume symbiosis. Plant Mol Biol Rep 8: 40-49.
Barrera-Figueroa BE, Gao L, Diop NN, et al . (2011) Identification
and comparative analysis of drought-associated microRNAs
in two cowpea genotypes. BMC Plant Biol 11: 127.
Barrera-Figueroa BE, Gao L, Wu Z, et al . (2012) High throughput
sequencing reveals novel and abiotic stress-regulated
microRNAs in the inflorescence of rice. BMC Plant Biol 12:
132.
Bayuelo-Jimenez JS, Craig R, Lynch JP (2002) Salinity toler-
ance of Phaseolus species during germination and early seed-
ling growth. Crop Sci 42: 1584-1594.
Boualem A, Laporte P, Jovanovic M, et al . (2008) MicroRNA166
controls root and nodule development in Medicago truncatula .
Plant J 54: 876-887.
Buhtz A, Springer F, Chappell L, Baulcombe DC, Kehr J (2008)
Identification and characterization of small RNAs from the
phloem of Brassica napus . Plant J 53: 739-749.
Buhtz A, Pieritz J, Springer F, Kehr J (2010) Phloem small
RNAs, nutrient stress responses and systemic mobility. BMC
Plant Biol 10: 64.
Bustos-Sanmamed P, Bazin J, Hartmann C, Crespi M, Lelasdais-
Brierre C (2013) Small RNA pathways and diversity in model
legumes: Lessons from genomics. Front Plant Sci 4: 236; doi:
10.3389/fpls.2013.00236.
Chen C, Tao C, Peng H, Ding Y (2007) Genetic analysis of salt
stress responses in Asparagus bean {( Vigna unguiculata L.) ssp.
Sesquipedalis Verds.}. J Hered 98: 655-665.
Chen L, Wang T, Zhao M, Tian Q, Zhang WH (2012)
Identification of aluminium-responsive microRNAs in Medicago
truncatula by genome-wide high throughput sequencing. Planta
235: 375-386.
Chen L, Wang T, Zhao M, Zhang W (2012) Ethylene-
responsive microRNAs in roots of Medicago truncatula identi-
fied by high throughput sequencing at whole genome level.
Plant Sci 184: 14-19.
Chen R, Hu Z, Zhang H (2009) Identification of microRNAs
in wild soybean ( Glycine soja ). J Integr Plant Biol 51:
1071-1079.
Chen X (2004) A microRNA as a translational repressor of
APETALA2 in Arabidopsis flower development. Science 303:
2022-2025.
Chen X (2005) microRNA biogenesis and function in plants.
FEBS Lett 579: 5923-5931.
Chen Y, Lohuis D, Goldbach R, Prins M (2004) High frequency
induction of RNA-mediated resistance against Cucumber
mosaic virus using inverted repeat constructs. Mol Breed 14:
215-226.
Chen YF, Wang Y, Wu WH (2008) Membrane transporters for
nitrogen, phosphate and potassium uptake in plants. J Integr
Plant Biol 50: 835-848.
Chen ZH, Nimmo GA, Jenkins G, Nimmo HG (2007) BHLH32
modulates several biochemical and morphological process
that respond to Pi starvation in Arabidopsis. Biochem J 405:
191-198.
Cheung F, Hass BJ, Goldberg SMD, May GD, Xiao Y, Town CD
(2006) Sequencing Medicago truncatula expressed sequenced
tags using 454 Life Sciences technology. BMC Genomics 7: 272.
Chiou TJ, Aung K, Lin SI, Wu CC, Chiang SF, Su CL (2006)
Regulation of phosphate homeostasis by microRNAs in
Arabidopsis. Plant Cell 18: 412-421.
Chuck G, Candela H, Hake S (2009) Big impact by small RNAs
in plant development. Curr Opin Plant Biol 12: 81-86.
Comai L, Zhang B (2012) MicroRNAs: key gene regulators with
versatile functions. Plant Mol Biol 80: 1.
Combier JP, Frugier F, De Billy F, et al . (2006) MtHAP2-1 is a key
transcriptional regulator of symbiotic nodule development
regulated by microRNA169 in Medicago truncatula . Genes
Develop 20: 3084-3088.
Cook DR (1999) Medicago truncatula - a model in the making.
Curr Opin Plant Biol 2: 301-304.
De Luis A, Markmann K, Cognat V, et al . (2012) Two microR-
NAs linked to nodule infection and nitrogen-fixing ability in
the legume Lotus japonicus . Plant Physiol 160: 2137-2154.
Deschamps S, Campbell MA (2010) Utilization of next-genera-
tion sequencing platforms in plant genomics and genetic var-
iant discovery. Mol Breed 25: 553-570.
Devaiah B, Karthikeyan AS, Ragothama KG (2007) WRKY75
transcription factor is a modulator of phosphate acquisition
and root development in Arabidopsis. Plant Physiol 143:
1789-1801.
Devers EA, Branschield A, May P, Krajinski F (2011) Stars and
symbiosis: microRNA and microRNA*-mediated transcript
cleavage involved in arbuscular mycorrhizal symbiosis. Plant
Physiol 156: 1990-2010.
Search WWH ::




Custom Search