Civil Engineering Reference
In-Depth Information
δσ a =
δσ r =
During the increment
10 kPa,
0 and, from Eqs. (3.3) to (3.6),
q = δ a δσ r =
δ
10 kPa
p =
1
3 (
1
3
δσ a +
σ r )
δ
2
=
×
10
=
3.3 kPa
2
3 (
2
3 (0.05
δε s =
δε a δε r )
=
+
0.01)
=
0.04%
δε v = δε a +
2
δε r =
0.05
0.02
=
0.03%
Example 3.2: Calculation of shear and bulk modulus The soil in Example 3.1 is
isotropic and elastic (i.e. shearing and volumetric effects are decoupled). For the
increment,
q
Shear modulus G = δ
10
=
1000 =
8.3MPa
3
δε
3
×
0.04/100
×
s
p
δε
bulk modulus K = δ
3.3
0.03/100
v =
1000 =
11.1MPa
×
Young's modulus E = δσ a
δε
10
0.05/100
a =
1000 =
20MPa
×
ν =− δε
a =−
0.01
0.05 =
r
δε
Poisson's ratio
0.2
From Eqs. (3.24) and (3.25), substituting for E and
ν ,
E
20
G =
+ ν ) =
0.2) =
8.3MPa
2(1
2(1
+
E
20
K =
ν ) =
0.4) =
11.1MPa
3(1
2
3(1
Further reading
Atkinson, J. H. (1981) Foundations and Slopes , McGraw-Hill, London.
Calladine, C. R. (1969) Engineering Plasticity , Pergamon Press, London.
Case, J., A. H. Chilver and C. T. F. Ross (1999) Strength of Materials and Structures , Edward
Arnold, London.
Heyman, J. (1972) Coulomb's Memoir on Statics , Cambridge University Press.
Jaeger, J. C. (1969) Elasticity, Fracture and Flow , Methuen, London.
Palmer, A. C. (1976) Structural Mechanics , Oxford University Press.
Timoshenko, S. P. and J. N. Goodier (1969) Theory of Elasticity , McGraw-Hill, New York.
 
 
Search WWH ::




Custom Search