Biomedical Engineering Reference
In-Depth Information
Figure  6.55  (a) Detailed view of a microfabricated chromatography column in a proteomic.
(b) Microscope view of the spray nozzle. (Courtesy of N. Sarrut, CEA/LETI.)
r
s
é
ù é
ù
é
s
+
1
ù é
r
+
1
ù
æ
y
ö
æ
x
ö
Q U
=
1
-
1
-
ê
ú ê
ú
ç
÷
ç
÷
ê
ú ê
ú
è
ø
è
ø
s
r
d
/ 2
w
/ 2
ë
û ë
û ê
ú ê
ú
ë
û ë
û
we derive
Q U w d
=
ì
ü ì
ü
d
/ 2
é
r
ù
d
/ 2
é
r
ù
é
s
+
1
ù é
r
+
1
ù
ï
æ
y
ö
ï ï
æ
x
ö
ï
ò
ò
Q U
=
2
1
-
dy
1
-
dx
ê
ú
ê
ú
í
ý í
ý
(6.106)
ç
÷
ç
÷
1
ê
ú ê
ú
è
ø
è
ø
s
r
d
/ 2
w
/ 2
ë
û ë
û
ê
ú
ê
ú
ï
ï ï
ï
ë
û
ë
û
î
þ î
þ
0
0
Integrating (6.106) with the values s = r = 2 yields
Q
Q
1
2
»
ε
(2 3
+
ε ε
-
2 )
(6.107)
Figure 6.56  Experimental result of chromatography separation of peptides in a proteomic reactor.
Mass spectrometry trace of separation in the microfabricated column of Figure 6.47. Experiment
using 50 fento-mol of a protein tryptic digest ( b -Galactosidase) and liquid chromatography flow rate
300 nanoliters/min. Reconstructed chromatograms and corresponding mass spectra for a tryptic
peptide of b -Galactosidase.
 
Search WWH ::




Custom Search