Biomedical Engineering Reference
In-Depth Information
References
[1] http://scienceworld.wolfram.com/physics/BrownianMotion.html.
[2] Tabeling, P., Introduction à la microfluidique, , Belin, 2003.
[3] Hiementz, P. C., and R. Rajagopalan, Principles of Colloid and Surface Chemistry , Marcel
Dekker, 1997.
[4] Crank, J., The Mathematics of Diffusion , Second Edition. Oxford University Press, 1999.
[5] Faucheux, L. P., and A . J. Libchaber, “Confined Brownian Motion,” Physical Review E ,
Vol. 49, No. 6, 1994.
[6] Press, W.H., et al., Numerical Recipes , Cambridge University Press, Cambridge, 1987.
[7] Chatelain, F., and J. Berthier, “Microfluidic device for performing a plurality of reactions
and uses thereof,” PCT/FR2004/01850 , 2004.
[8] Buckingham, E., “On Physically Similar Systems: Illustrations of the Use of Dimensional
Equations,” Phys. Rev. , Vol. 4, 1914, pp. 345-376.
[9] COMSOL reference manual , Stockholm: COMSOL AB, http://www.comsol.com.
[10] de Gennes, G., “Polymers at an interface: a simplified view,” Adv. Colloid Interface Sci. ,
Vol. 27, No. 5, 1987, pp. 189-209.
[11] http://www.mathworks.com/.
[12] Johnson, E., et al., “Nanoscale lead-tin inclusions in aluminium ,” Journal of Electron Mi-
croscopy , Vol. 51, 2002, pp. S201 -S209.
[13] Pollack, G. H., Cells, gels and the engines of life , Ebner and Sons Publishers, 2001.
[14] Rumanian, S., et al., “Diffusion and convection in collagen gels: implications for transport
in the tumor interstitium,” Biophys. J. , Vol. 83, 2002, pp. 1650-1660.
[15] Nicholson, C., and E. Sykova; “Extracellular space structure revealed by diffusion analy-
sis,” TINS , Vol. 21, No. 5, 1998, pp. 207-215.
[16] M. Martin, “Conséquences d'une irradiation ionisante sur la peau humaine,” Clefs CEA ,
Vol. 48, 2003, pp. 53-55.
[17] J. Lankelma, et al., “A mathematical model of drug transport in human breast cancer,”
Microvascular Research , Vol. 59, 2000, pp. 149-161.
[18] El-Kareh, A.W., Braunstein, S. L., and T.W. Secomb, “Effect of cell arrangement and inter-
stitial volume fraction on the diffusivity of monoclonal antibodies in tissue,” Biophys. J. ,
Vol. 64, 1993, pp. 1638-1646.
[19] Herneth, A. M., Guccione, S., and M. Bednarski, “Apparent diffusion coefficient: a quanti-
tative parameter for in vivo tumor characterization,” European Journal of Radiology , Vol.
45, 2003, pp. 208-213.
[20] Chen, K. C., and C. Nicholson, “Changes in brain cell shape create residual extracellular
space volume and explain tortuosity behavior during osmotic challenge,” Proc. Natl. Acad.
Sci. USA , Vol. 97, No. 15, 1999, pp. 8306-8311.
[21] Saxton, M. J., “Lateral diffusion in an archipelago, the effect of mobile obstacles,” Bio-
phys. J., Vol. 52, 1987, pp. 989-997.
[22] Blum, J. J., Lawler, G., Reed, M., and I. Shin, “Effect of cytoskeletal geometry on intracel-
lular diffusion,” Biophys. J. , Vol. 56, 1989, pp. 995-1005.
[23] Szafer, A., Zhong, J., and J. C. Gore, “Theoretical model for water diffusion in tissues,”
Magnetics Resonance in Medicine , Vol. 33, No. 5, 1995, pp. 697-712.
[24] Berthier, J., Rivera, F., and P. Caillat, “Numerical modeling of diffusion in extracellular
space of biological cell clusters and tumors,” Nanotech 2004 , Boston, 7-11 March, 2004.
[25] Brakke, K. A., “The Surface Evolver,” Experimental Mathematics , Vol. 1, No. 2, 1992,
pp. 141-165.
[26] de Sousa, P. L., Abergel, D., and J-Y Lallemand, “Experimental time saving in NMR
measurement of time dependent diffusion coefficients,” Chemical Physics Letters , 2001,
p. 342.
 
Search WWH ::




Custom Search