Biomedical Engineering Reference
In-Depth Information
[39] Engl, W., et al., “Droplet traffic at a simple junction at low capillary numbers,” Phys. Rev.
Lett. , Vol. 95, 2005, p. 208304.
[40] Adzima, B.J., S.S. Velankar, “Pressure drops for droplet flows in microfluidic channels,” J.
MicroMec. MicroEng ., Vol. 16, 2006, pp. 1504-1510.
[41] Jie Xu, D. Attinger, “Control and ultrasonic actuation of a gas-liquid interface in a micro-
fluidic chip,” J. Micromech. Microeng. , Vol. 17, 2007, pp. 609-616.
[42] Le Gac S, E. Zwaan, A. van den Berg, C-D Ohl, “Sonoporation of suspension cells with a
single cavitation bubble in a microfluidic confinement,” Lab Chip , Vol.7, 2007, pp. 1666-
1672.
[43] van der Wijngaart, W., T. Frisk, and G. Stemme, “A micromachined interface for transfer of
liquid or vapor sample to a liquid solution,” Proceedings of the 13th International Confer-
ence on Solid-State Sensors, Actuators and Microsystems , Seoul, June 5-9, 2005.
[44] Aota, A., M. Nonaka, A. Hibara, and T. Kitamori, “Countercurrent laminar microflow for
highly efficient solvent extraction,” Angew. Chem. Int. Ed. , Vol. 46, 2007, pp. 878-880.
[45] Miyaguchi, H., et al., “Microchip-based liquid-liquid extraction for gas-chromatography
analysis of amphetamine-type stimulants in urine,” Journal of Chromatography A , Vol. 1129,
2006, pp. 105-110.
[46] Ehrfeld, W., V. Hessel, H. Lowe, Microreators , Wiley-VCH, 2000, pp. 126-130.
[47] Van-Man Tran, J. Berthier, R. Blanc, O. Constantin, C. Vauchier, N. Sarrut, “Micro-extractor
for liquid-liquid extraction, concentration and in situ detection of lead,” Proceedings of the
2008 AIChE Spring Meeting , 10th International Conference on Microreaction Technology
(IMRET-10), 2008.
[48] Jason G. Kralj, Hermantkumar R. Sahoo, Klavs F. Jensen, “Integrated continous microflu-
idic liquid-liquid extraction,” Lab Chip , Vol 7, 2007, pp. 256-263.
[49] Berthier, J., et al., “The physics of a coflow micro-extractor: Interface stability and optimal
extraction length,” Sensors and Actuators A: Physical , Vol. 149, No. 1, 2009, pp. 56-64.
[50] Song, H., D.L. Chen, and R.F. Ismagilov, “Reactions in droplets in microfluidics channels,”
Angewandte Chemie , Vol. 45, 2006, pp. 7336-7356.
[51] Chen, D.L., Liang Li, S. Reyes, D.N. Adamson, and R.F. Ismagilov, “Using three-phase flow
of immiscible liquids to prevent coalescence of droplets in microfluidic channels: criteria
to identify the third liquid and validation with protein crystallization,” Langmuir , Vol. 23,
2007, pp. 2255-2260.
[52] Tice, J.D., H. Song, A. D. Lyon, and R. F. Ismagilov, “Formation of droplets and mixing
in multiphase microfluidics at low values of the Reynolds and the Capillary numbers,”
Langmuir , Vol. 19, 2003, pp. 9127-9133.
[53] Garstecki, P., et al., “Formation of droplets and bubbles in a microfluidic T-junction: scal-
ing and mechanism of break-up,” Lab Chip , Vol. 6, 2006, pp. 437-446.
[54] Joanicot, M., and A. Ajdari, “Droplet Control for Microfluidics,” Science , Vol. 5, 2005,
pp. 887-888.
[55] Cabral, J.T., and S.D. Hudson, “Microfluidic approach for rapid multicomponent interfa-
cial tensiometry,” Lab Chip , Vol. 6, 2006, pp. 427-436.
[56] Anna, S.L., N. Bontoux, and H.A. Stone, “Formation dispersions using 'flow focusing' in
microchannels,” Appl. Phys. Lett., Vol. 82, No. 3, 2003, pp. 364-366.
[57] Takeuchi, S., et al., “An axisymmetric flow-focusing microfluidic device,” S Adv. Mater. ,
Vol. 17, No. 8, 2005.
[58] Nisisako, T., T. Torii, and T. Higuchi, “Novel microreactors for functional polymer beads,”
Chemical Engineering Journal, Vol. 101, 2004, pp. 23-29.
[59] Thorsen, T., et al., “Dynamic pattern formation in a vesicle-generating mirofluidic device,”
Phys. Rev. Lett ., Vol. 86, 2001, pp. 4163-4166.
[60] Garstecki, P., et al., “Formation of droplets and bubbles in a microfluidic T-junction: scal-
ing and mechanism of break-up,” Lab Chip , Vol. 6, 2006, pp. 437-446.
Search WWH ::




Custom Search