Biomedical Engineering Reference
In-Depth Information
[14] Peykov, V., A. Quinn, and J. Ralston, “Electrowetting: a model for contact angle satura-
tion,” J. Colloid Polym. Sci. , Vol. 278, 2000, pp. 789-793.
[15] Quinn, A., R. Sedev, and J. Ralston, “Influence of the electrical double layer in electrowet-
ting,” J. Phys. Chem. B., Vol. 107, 2003, pp. 1163-1168.
[16] Berthier, J. Microdrops and Digital Microfluidics, , William Andrew Publishing, 2008.
[17] Zisman, W.A., “Contact angle, wettability and adhesion,” Advances in Chemistry Series ,
Vol. 43, Am. Chem. Soc., Washington, D.C., 1964, p.1.
[18] http://scienceworld.wolfram.com/physics/LangevinFunction.html
[19] Berthier, J., et al., “Computer aided design of an EWOD microdevice,” Sensors and Actua-
tors A: Physical , Vol. 127, 2006, pp. 283-294.
[20] Berthier, J., et al., “Actuation potentials and capillary forces in electrowetting based micro-
systems,” Sensors and Actuators , Vol. 134, No. 2, 2007, pp. 471-479.
[21] Fermigier, M., P. Jenffer, “An experimental investigation of the dynamic contact angle in
liquid-liquid systems,” J. Colloid. Interface Sci. , Vol. 146, 1990, pp. 226-242.
[22] Dodd, S.J., “A deterministic model for the growth of non-conducting electrical tree struc-
tures,” J. Phys. D: Appl. Phys., Vol. 36, 2003, pp. 129-141.
[23] Pollack, M.G., R. B. Fair, and D. Shenderov, “Electrowetting-based actuation of liquid
droplets for microfluidic applications,” Applied Physics Letters , Vol. 77, No. 11, 2000,
pp. 1725-1726.
[24] Moon, H., et al., “Low voltage electrowetting-on-dielectric,” Journal of Applied Physics ,
Vol. 92, No. 7, 2002, pp. 4080-4087.
[25] Shapiro, B., et al., “Equilibrium behavior of sessile drops under surface tension, applied
external fields, and material variations,” Journal of Applied Physics , Vol. 93, No. 9, May
2003, pp. 5794-5811.
[26] Cho, S.K., H. Moon, and C-J Kim, “Creating, transporting, and merging liquid droplets by
electrowetting-based actuation for digital microfluidics circuits,” Journal of Microelectro-
mechanical Systems , Vol. 12, No. 1, 2003, pp. 70-80.
[27] Chaudhury, M.K., and G.M. Whitesides, “How to make water run uphill,” Science ,
Vol. 256, 1992, pp. 1539-1541.
[28] Moumen, N., R.S. Subramanian, and J. McLMaughlin, “The Motion of a Drop on a Solid
Surface due to a Wettability Gradient,” Proceedings of the AIChe 2003 Annual Meeting ,
2003.
[29] Brakke, K., “The Surface Evolver,” Exp. Math. , Vol. 1, 1992, p. 141.
[30] Ahmed, R., and T.B. Jones, “Dispensing picoliter droplets on substrates using dielectropho-
resis,” J. Electrostatics , Vol. 64, 2006, pp. 543-549.
[31] Wang K-L, T. B. Jones and A. Raisanen, “Dynamic control of DEP actuation and droplet
dispensing,” J. Micromech. Microengrg. , Vol. 17, pp. 76-80, 2007.
[32] Hoffman, R.L., “A study of advancing interface,” J. Colloid Interface Science , Vol. 50,
1975, pp. 228-241.
[33] Chibowski, E., A. Ontiveros-Ortega, and R. Perea-Carpio, “On the interpretation of con-
tact angle hysteresis,” J. Adherence Sci. Technol., Vol 16, No. 10, 2002, pp. 1367-1404.
[34] Ramos, S.M.M., E. Charlaix, and A. Benyagoub, “Contact angle hysteresis on nano-
structured surfaces,” Surface Science , Vol. 540, 2003, pp. 355-362.
[35] Bo He, Junghoon Lee, and N.A. Patankar, “Contact angle hysteresis on rough hydrophobic
surfaces,” Colloids and Surfaces A: Physicchem. Eng. Aspects , Vol. 48, 2004, pp. 101-104.
[36] Berthier, J., and F. Ricoul, “Numerical modeling of ferrofluid flow instabilities in a capillary
tube at the vicinity of a magnet,” Proceedings of the 2002 MSM Conference , 22-25 April
2002, San Juan, Puerto Rico, 2002.
[37] Washburn, E.W., “The dynamics of capillary flow,” Phys. Rev. , 1921, pp. 273-283.
[38] Berthier J., P. Silberzan, Microfluidics for Biotechnology , 1st Edition, Artech House Pub-
lishers, 2005.
Search WWH ::




Custom Search