Biomedical Engineering Reference
In-Depth Information
[6] Weisstein, E., http://mathworld.wolfram.com/Curvature.html.
[7] deGennes, P. G., “Wetting: Statistics and Dynamics,” Rev. Mod. Phys ., Vol. 57, 1985,
p. 827.
[8] Berthier, J., Microdrops and Digital Microfluidics, , New York: William Andrew Publishing,
2008.
[9] Darhuber, A. A., and S. M. Troian, “Principles of Microfluidic Actuation by Modulation of
Surface Stresses,” Annu. Rev. Fluid Mech ., Vol. 37, 2005, pp. 425-455.
[10] deGennes, P. G., F. Brochart-Wyart, and D. Quéré, Drops, Bubbles, Pearls, and Waves ,
New York: Springer, 2005.
[11] Wang, J. Y., S. Betelu, and B. M. Law, “Line Tension Approaching a First-Order Wetting
Transition: Experimental Results from Contact Angle Measurements,” Physical Review E ,
Vol. 63, 2001, pp. 031601-1, 031601-10.
[12] Li, W., et al., “Screening of the Effect of Surface Energy of Microchannels on Microfluidic
Emulsification,” Langmuir , Vol. 23, 2007, pp. 8010-8014.
[13] Ying-Song Yu, Ya-Pu Zhao, “Deformation of PDMS Membrane and Microcantilever by
a Water Droplet: Comparison Between Mooney-Rivlin and Linear Elastic Constitutive
Models,” Journal of Colloid and Interface Science , Vol. 332, 2009, pp. 467-476.
[14] Bormashenko, E., Y. Bormashenko, and A. Musin, “Water Rolling and Floating Upon
Water: Marbles Supported by a Water/Marble Interface,” Journal of Colloid and Interface
Science , Vol. 333, 2009, pp. 419-421.
[15] Brakke, K., “The Surface Evolver,” Exp. Math ., Vol. 1, 1992, p. 141.
[16] Hu, D. L., and J. W. M. Bush, “Meniscus-Climbing Insects,” Nature , Vol. 437, 2005, pp.
733-736.
[17] Suzuki, K., “Flow Resistance of a Liquid Droplet Confined Between Two Hydrophobic
Surfaces,” Microsyst. Technol ., Vol. 11, 2005, pp. 1107-1114.
[18] Tsori, Y., “Discontinuous Liquid Rise in Capillaries with Varying Cross-Sections,” Lang-
muir , Vol. 22, 2006, pp. 8860-8863.
[19] Bruus, H., Theoretical Microfluidics, , Oxford, U.K.: Oxford University Press, 2008.
[20] Zeng, J., and T. Korsmeyer, “Principles of Droplet Electrohydrodynamics for Lab-on-a-
Chip,” Lab Chip , Vol. 4, 2004, pp. 265-277.
[21] Berthier, J., et al., “Actuation Potentials and Capillary Forces in Electrowetting Based Mi-
crosystems,” Sensors and Actuators, A: Physical , Vol. 134, No. 2, 2007, pp. 471- 479.
[22] Günther, A., et al., “Micromixing of Miscible Liquids in Segmented Gas-Liquid Flow,”
Langmuir , Vol. 21, 2005, pp. 1547-1555.
[23] Berthier, J., et al., “The Physics of a Coflow Micro-Extractor: Interface Stability and Opti-
mal Extraction Length,” Sensors and Actuators A , Vol. 149, 2009, pp. 56-64.
[24] Nie, Z. H., et al., “Emulsification in a Microfluidic Flow-Focusing Device: Effect of the
Viscosities of the Liquids,” Microfluid Nanofluid., ., Vol. 5, 2008, pp. 585-594.
[25] Concus, P., and R. Finn, “On the Behavior of a Capillary Surface in a Wedge,” PNAS ,
Vol. 63, No. 2, 1969, pp. 292-299.
[26] Brakke, K., “Minimal Surfaces, Corners, and Wires,” J. Geom. Anal ., Vol. 2, 1992, pp. 11-36.
[27] Seemann, R., et al., “Wetting Morphologies at Microstructured Surfaces,” PNAS , Vol. 102,
2005, pp. 1848-1852.
[28] Lipowsky, R., et al., “Wetting, Budding, and Fusion—Morphological Transitions of Soft
Surfaces,” J. Phys.: Condens. Matter , Vol. 17, 2005, pp. S2885-S2902.
[29] Gau, H., et al., “Liquid Morphologies on Structured Surfaces: From Microchannels to
Microchips,” Science , Vol. 383, 1999, pp. 46-49.
[30] Lenz, P., and R. Lipowsky, “Morphological Transitions of Wetting Layers on Structured
Surfaces,” Phys. Rev. Letters , Vol. 80, No. 9, 1998, pp. 1920-1923.
[31] Brinkmann, M., and R. Lipowsky, “Wetting Morphologies on Substrates with Striped Sur-
face Domains,” Journal of Applied Physics , Vol. 92, No. 8, 2002, pp. 4296- 4306.
Search WWH ::




Custom Search