Biomedical Engineering Reference
In-Depth Information
2. P.L. Ferguson and R.D. Smith, Proteome analysis by mass spectrometry,
Annu. Rev. Biophys. Biomol. Struct., 32 (2003), 399-424.
3. B. Adam, A. Vlahou, O.J. Semmes and G.L. Wright, Jr., Proteomic ap-
proaches to biomarker discovery in prostate and bladder cancers, Proteomics,
1 (2001), 1264-1270.
4. L.H. Cazares, et al., Normal, benign, preneoplastic, and malignant prostate
cells have distinct protein expression proles resolved by surface enhanced
laser desorption/ionization mass spectrometry, Clin. Cancer Res., 8 (2002),
2541-2552.
5. B. Adam, et al., Serum protein ngerprinting coupled with a pattern-
matching algorithm distinguishes prostate cancer from benign prostate hy-
perplasia and healthy men, Cancer Res., 62 (2002), 3609-3614.
6. Y. Qu, et al., Boosted decision tree analysis of surface-enhanced laser des-
orption/ionization mass spectral serum proles discriminates prostate cancer
from noncancer patients, Clin. Chem., 48 (2002), 1835-1843.
7. Y.F. Wong, et al., Protein proling of cervical cancer by protein-biochips:
proteomic scoring to discriminate cervical cancer from normal cervix, Cancer
Lett., 211 (2004), 227-234.
8. Y. Hu, et al., SELDI-TOF-MS: the proteomics and bioinformatics approaches
in the diagnosis of breast cancer, The Breast, 14 (2005), 250-255.
9. J.N. Adkins, et al., Toward a human blood serum proteome, Mol. Cell. Pro-
teomics, 1 (2002), 947-955.
10. C. Wrotnowski, The future of plasma proteins, Genet. Eng. News, 18 (1998),
14-17.
11. S. Vorderwubecke, S. Cleverley, S.R. Weinberger, and A. Wiesner, Protein
quantication by the SELDI-TOF-MS-based ProteinChip system, Nat. Meth-
ods, 2 (2005), 393-395.
12. W.E. Wallace, A.J. Kearsley, and C.M. Guttman, An operator-independent
approach to mass spectral peak identication and integration, Anal. Chem.,
76 (2004), 2446-2452.
13. C. M. Guttman, et al., NIST-Sponsored interlaboratory comparison of
polystyrene molecular mass distribution obtained by matrix-assisted laser
desorption/ionization time-of-ight mass spectrometry: statistical analysis,
Anal. Chem., 73 (2001), 1252-1262.
14. Wm.F. Bryant, et al., Data-blocking cross-correlation peak detection in com-
puterized gas chromatography-mass spectrometry, Anal. Chem., 52 (1980),
38-43.
15. R. Gras, et al., Improving protein identication from peptide mass nger-
printing through a parameterized multi-level scoring algorithm and an opti-
mized peak detection, Electrophoresis, 20 (1999), 3535-3550.
16. K.H. Jarman, D.S. Daly, K.K. Anderson and K.L. Wahl, A new approach to
automated peak detection, Chemo. Intell. Lab. Syst., 69 (2003), 61-76.
17. J. S. Morris, et al., Feature extraction and quantication for mass spectrom-
etry in biomedical applications using the mean spectrum, Bioinformatics, 21
(2005), 1764-1775.
18. B.O. Keller and L. Li, Detection of 25,000 molecules of substance P by
Search WWH ::




Custom Search